We consider the problem of maximal regularity for the semilinear non-autonomous evolution equations u'(t) + A(t)u(t) = F(t, u), t.e., u(0) = u(0). Here, the time-dependent operators A(t) are associated with (time dependent) sesquilinear forms on a Hilbert space H. We prove the maximal regularity result in temporally weighted L-2-spaces and other regularity properties for the solution of the previous problem under minimal regularity assumptions on the forms, the initial value u(0) and the inhomogeneous term F. Our results are motivated by boundary value problems.
机构:
Univ Polytech Hauts De france, CERAMATHS, DEMAV, F-59313 Valenciennes 9, FranceUniv Polytech Hauts De france, CERAMATHS, DEMAV, F-59313 Valenciennes 9, France
Akil, Mohammad
Fragnelli, Genni
论文数: 0引用数: 0
h-index: 0
机构:
Univ Siena, Dept Informat Engn & Math, via Roma, 56, I-53100 Viterbo, ItalyUniv Polytech Hauts De france, CERAMATHS, DEMAV, F-59313 Valenciennes 9, France
Fragnelli, Genni
Ismail, Sarah
论文数: 0引用数: 0
h-index: 0
机构:
Univ Bari Aldo Moro, Dept Math, Via E Orabona 4, I-70125 Bari, ItalyUniv Polytech Hauts De france, CERAMATHS, DEMAV, F-59313 Valenciennes 9, France