A linear metric reconstruction by complex eigen-decomposition

被引:0
|
作者
Seo, Y [1 ]
Hong, KS [1 ]
机构
[1] Pohang Univ Sci & Technol, POSTECH, Pohang, South Korea
来源
关键词
metric reconstruction; eigen-decomposition; projective reconstruction; self-calibration;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper proposes a linear algorithm for metric reconstruction from projective reconstruction. Metric reconstruction problem is equivalent to estimating the projective transformation matrix that converts projective reconstruction to Euclidean reconstruct ion. We build a quadratic form froin dual absolute conic projection equation with respect to the elements of the transformation matrix. The matrix of quadratic form of rank 2 is then eigen-decomposed to produce a linear estimate. The algorithm is applied to three different sets of real data and the results show a feasibility of the algorithm. Additionally, our comparison of results of the linear algorithm to results of bundle adjustment, applied to sets of synthetic image data having Gaussian image noise, shows reasonable error ranges.
引用
收藏
页码:1626 / 1632
页数:7
相关论文
共 50 条
  • [1] A linear metric reconstruction by complex eigen-decomposition
    Pohang Univ. of Sci. and Technol., Pohang, Korea, Republic of
    IEICE Transactions on Information and Systems, 2001, E84-D (12) : 1626 - 1632
  • [2] Eigen-Decomposition of Quaternions
    Roger M. Oba
    Advances in Applied Clifford Algebras, 2018, 28
  • [3] Eigen-Decomposition of Quaternions
    Oba, Roger M.
    ADVANCES IN APPLIED CLIFFORD ALGEBRAS, 2018, 28 (05)
  • [4] Eigen-decomposition of covariance matrices: An application to the BAO linear point
    Lee, Jaemyoung
    Nikakhtar, Farnik
    Paranjape, Aseem
    Sheth, Ravi K.
    PHYSICAL REVIEW D, 2024, 110 (10)
  • [5] Isomorphism of balance theory and Eigen-decomposition
    Kosugi, K
    Fujisawa, T
    Fujihara, T
    SOCIOLOGICAL THEORY AND METHODS, 2004, 19 (01) : 87 - 100
  • [6] SWIPT THROUGH EIGEN-DECOMPOSITION OF MIMO CHANNELS
    Timotheou, Stelios
    Krikidis, Ioannis
    2015 23RD EUROPEAN SIGNAL PROCESSING CONFERENCE (EUSIPCO), 2015, : 1994 - 1998
  • [7] A principal component network for generalized Eigen-decomposition
    Xu, DX
    Principe, JC
    Wu, HC
    IEEE WORLD CONGRESS ON COMPUTATIONAL INTELLIGENCE, 1998, : 849 - 853
  • [8] Approximate normalized cuts without Eigen-decomposition
    Jia, Hongjie
    Ding, Shifei
    Du, Mingjing
    Xue, Yu
    INFORMATION SCIENCES, 2016, 374 : 135 - 150
  • [9] A sparse eigen-decomposition estimation in semiparametric regression
    Zhu, Li-Ping
    Yu, Zhou
    Zhu, Li-Xing
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2010, 54 (04) : 976 - 986
  • [10] Solving the heterogeneous positioning problem via eigen-decomposition
    Juang, J. -C.
    ELECTRONICS LETTERS, 2008, 44 (06) : 432 - 433