Koplienko Trace Formula

被引:7
作者
Chattopadhyay, Arup [1 ]
Sinha, Kalyan B. [1 ]
机构
[1] JN Ctr Adv Sci Res, Bangalore 560064, Karnataka, India
关键词
Trace formula; shift function; SPECTRAL SHIFT FUNCTION;
D O I
10.1007/s00020-012-1978-4
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Koplienko (Sib Math J 25(5): 735-743, 1984) gave a trace formula for perturbations of self-adjoint operators by operators of Hilbert-Schmidt class . Recently Gesztesy et al. (Basics Z Mat Fiz Anal Geom 4(1):63-107, 2008) gave an alternative proof of the trace formula when the operators involved are bounded. In this article, we give a still another proof and extend the formula for unbounded case by reducing the problem to a finite dimensional one as in the proof of Krein trace formula by Voiculescu (On a Trace Formula of M. G. Krein. Operator Theory: Advances and Applications, vol. 24, pp. 329-332. Birkhauser, Basel, 1987), Sinha and Mohapatra (Proc Indian Acad Sci (Math Sci) 104(4):819-853, 1994).
引用
收藏
页码:573 / 587
页数:15
相关论文
共 14 条
[1]  
[Anonymous], J SOVIET MATH
[2]  
Bhatia R., 2013, MATRIX ANAL
[3]   Double operator integrals in a Hilbert space [J].
Birman, MS ;
Solomyak, M .
INTEGRAL EQUATIONS AND OPERATOR THEORY, 2003, 47 (02) :131-168
[4]  
Boyadzhiev K. N., 1993, Math. Japonica, V38, P217
[5]   Higher order spectral shift [J].
Dykema, Ken ;
Skripka, Anna .
JOURNAL OF FUNCTIONAL ANALYSIS, 2009, 257 (04) :1092-1132
[6]  
Gesztesy F, 2008, J MATH PHYS ANAL GEO, V4, P63
[7]  
Kato T., 1985, PERTURBATION THEORY
[8]  
KOPLIENKO LS, 1984, SIBERIAN MATH J+, V25, P735
[9]  
Krein M. G., 1983, Topics in Differential and Integral Equations and Operator Theory, V7, P107
[10]  
Parthasarathy K.R., 1977, INTRO PROBABILITY ME