Nucleation in Finite Topological Systems During Continuous Metastable Quantum Phase Transitions

被引:29
作者
Fialko, Oleksandr [1 ,2 ]
Delattre, Marie-Coralie [1 ,2 ]
Brand, Joachim [1 ,2 ]
Kolovsky, Andrey R. [3 ,4 ]
机构
[1] Massey Univ, Ctr Theoret Chem & Phys, Auckland 0745, New Zealand
[2] Massey Univ, New Zealand Inst Adv Study, Auckland 0745, New Zealand
[3] LV Kirenskii Inst Phys, Krasnoyarsk 660036, Russia
[4] Siberian Fed Univ, Krasnoyarsk 660041, Russia
关键词
SYMMETRY-BREAKING; VORTEX NUCLEATION; SUPERFLUID; DYNAMICS;
D O I
10.1103/PhysRevLett.108.250402
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Finite topological quantum systems can undergo continuous metastable quantum phase transitions to change their topological nature. Here we show how to nucleate the transition between ring currents and dark soliton states in a toroidally trapped Bose-Einstein condensate. An adiabatic passage to wind and unwind its phase is achieved by explicit global breaking of the rotational symmetry. This could be realized with current experimental technology.
引用
收藏
页数:5
相关论文
共 31 条
[1]   MORE IS DIFFERENT - BROKEN SYMMETRY AND NATURE OF HIERARCHICAL STRUCTURE OF SCIENCE [J].
ANDERSON, PW .
SCIENCE, 1972, 177 (4047) :393-&
[2]  
[Anonymous], 1968, QUANTUM MECH
[3]  
Averitt RD, 2010, NAT PHYS, V6, P639, DOI 10.1038/nphys1768
[4]  
BROYDEN CG, 1965, MATH COMPUT, V19, P557
[5]   Excited state quantum phase transitions in many-body systems [J].
Caprio, M. A. ;
Cejnar, P. ;
Iachello, F. .
ANNALS OF PHYSICS, 2008, 323 (05) :1106-1135
[6]  
Carr L., 2010, Understanding Quantum Phase Transitions
[7]   Vortex nucleation as a case study of symmetry breaking in quantum systems [J].
Dagnino, D. ;
Barberan, N. ;
Lewenstein, M. ;
Dalibard, J. .
NATURE PHYSICS, 2009, 5 (06) :431-437
[8]   Winding up superfluid in a torus via Bose Einstein condensation [J].
Das, Arnab ;
Sabbatini, Jacopo ;
Zurek, Wojciech H. .
SCIENTIFIC REPORTS, 2012, 2
[9]   Superfluidity at supersonic speed? [J].
Haddad, M ;
Hakim, V .
PHYSICAL REVIEW LETTERS, 2001, 87 (21) :218901-1
[10]   Nonlinear Schrodinger flow past an obstacle in one dimension [J].
Hakim, V .
PHYSICAL REVIEW E, 1997, 55 (03) :2835-2845