ZnO quantum dots anchored in multilayered and flexible amorphous carbon sheets for high performance and stable lithium ion batteries

被引:76
作者
Fernando, Joseph F. S. [1 ]
Zhang, Chao [1 ]
Firestein, Konstantin L. [1 ]
Nerkar, Jawahar Y. [2 ]
Golberg, Dmitri V. [1 ,3 ]
机构
[1] Queensland Univ Technol, Fac Sci & Engn, Sch Chem Phys & Mech Engn, Brisbane, Qld 4000, Australia
[2] Queensland Univ Technol, Inst Future Environm, Brisbane, Qld 4000, Australia
[3] Natl Inst Mat Sci, Int Ctr Mat Nanoarchitecton MANA, Namiki 1-1, Tsukuba, Ibaraki 3050044, Japan
基金
澳大利亚研究理事会;
关键词
ENHANCED ELECTROCHEMICAL PERFORMANCE; ANODE MATERIAL; RECENT PROGRESS; CYCLE LIFE; NANOPARTICLES; SHELL; NANOMATERIALS; COMPOSITES; NANOFIBERS; NANOWIRES;
D O I
10.1039/c8ta12511b
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Owing to their high reversible capacity, cycling stability, low cost and safety, ultrafine ZnO particles embedded in carbonaceous materials are promising as electrode materials for lithium ion batteries (LIBs). Although there are a number of recent studies on ZnO/C based materials, direct evidence on the role played by the carbonaceous component, which is essential for the rational design of these nanomaterials with optimal electrochemical performance, is still missing. Herein, we systematically investigate the LIB performance of a novel ZnO quantum dot (ZnO-QD)/carbon composite using conventional electrochemical methods as well as the in situ transmission electron microscopy (TEM) technique. A composite of ZnO-QDs anchored in amorphous carbon multilayered sheets (ZnO-QDs@CMS) was synthesized using a pre-prepared zinc glycolate complex as the precursor. After low temperature annealing in Ar, the glycolate moieties carbonized and directly formed homogeneously distributed ZnO QDs embedded in ultrathin amorphous carbon layers. The ZnO-QDs@CMS delivered a high reversible capacity of 1015 mA h g(-1) after 80 cycles at a specific current of 50 mA g(-1). Even at 1000 mA g(-1), a reversible capacity of 565 mA h g(-1) was maintained after 350 cycles, with a capacity fading of only 5.7% (with respect to the second cycle). Comparative in situ TEM (de)lithiation studies of ZnO-QDs@CMS and pristine ZnO uncovered the role played by the amorphous carbon network in LIB performance. In addition to mitigating the volume expansion, during lithiation the flexible and conductive amorphous carbon network of the ZnO-QDs@CMS electrode suppressed the formation of adversely large Zn crystals and favoured the formation of a LiZn alloy, which contributed to the high reversible capacity and long-term stability.
引用
收藏
页码:8460 / 8471
页数:12
相关论文
共 48 条
[1]   Tunneled Mesoporous Carbon Nanofibers with Embedded ZnO Nanoparticles for Ultrafast Lithium Storage [J].
An, Geon-Hyoung ;
Lee, Do-Young ;
Ahn, Hyo-Jin .
ACS APPLIED MATERIALS & INTERFACES, 2017, 9 (14) :12478-12485
[2]   Building better batteries [J].
Armand, M. ;
Tarascon, J. -M. .
NATURE, 2008, 451 (7179) :652-657
[3]   Transition-Metal-Doped Zinc Oxide Nanoparticles as a New Lithium-Ion Anode Material [J].
Bresser, Dominic ;
Mueller, Franziska ;
Fiedler, Martin ;
Krueger, Steffen ;
Kloepsch, Richard ;
Baither, Dietmar ;
Winter, Martin ;
Paillard, Elie ;
Passerini, Stefano .
CHEMISTRY OF MATERIALS, 2013, 25 (24) :4977-4985
[4]   Carbon Coated ZnFe2O4 Nanoparticles for Advanced Lithium-Ion Anodes [J].
Bresser, Dominic ;
Paillard, Elie ;
Kloepsch, Richard ;
Krueger, Steffen ;
Fiedler, Martin ;
Schmitz, Rene ;
Baither, Dietmar ;
Winter, Martin ;
Passerini, Stefano .
ADVANCED ENERGY MATERIALS, 2013, 3 (04) :513-523
[5]   Nanomaterials for rechargeable lithium batteries [J].
Bruce, Peter G. ;
Scrosati, Bruno ;
Tarascon, Jean-Marie .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2008, 47 (16) :2930-2946
[6]   Zinc Glycolate: A Precursor to ZnO [J].
Das, Jaykrushna ;
Evans, Ivana R. ;
Khushalani, Deepa .
INORGANIC CHEMISTRY, 2009, 48 (08) :3508-3510
[7]   From zinc-cyanide hybrid coordination polymers to hierarchical yolk-shell structures for high-performance and ultra-stable lithium-ion batteries [J].
Fan, Haosen ;
Yu, Hong ;
Zhang, Yufei ;
Guo, Jing ;
Wang, Zhen ;
Wang, Hao ;
Hao, Xi ;
Zhao, Ning ;
Geng, Hongbo ;
Dai, Zhengfei ;
Yan, Qingyu ;
Xu, Jian .
NANO ENERGY, 2017, 33 :168-176
[8]   ZnS quantum dots@multilayered carbon: geological-plate-movement-inspired design for high-energy Li-ion batteries [J].
Fang, Daliang ;
Chen, Shimou ;
Wang, Xi ;
Bando, Yoshio ;
Golberg, Dmitri ;
Zhang, Suojiang .
JOURNAL OF MATERIALS CHEMISTRY A, 2018, 6 (18) :8358-8365
[9]   Optical and Optoelectronic Property Analysis of Nanomaterials inside Transmission Electron Microscope [J].
Fernando, Joseph F. S. ;
Zhang, Chao ;
Firestein, Konstantin L. ;
Golberg, Dmitri .
SMALL, 2017, 13 (45)
[10]   Small Gold Nanoparticles as Crystallization "Catalysts": Effect of Seed Size and Concentration on Au-ZnO Hetero Nanoparticles [J].
Fernando, Joseph F. S. ;
Shortell, Matthew P. ;
Vernon, Kristy C. ;
Jaatinen, Esa A. ;
Waclawik, Eric R. .
CRYSTAL GROWTH & DESIGN, 2015, 15 (09) :4324-4330