Usage-based PageRank for web personalization

被引:14
作者
Eirinaki, M [1 ]
Vazirgiannis, M [1 ]
机构
[1] Athens Univ Econ & Business, Dept Comp, Athens 10434, Greece
来源
FIFTH IEEE INTERNATIONAL CONFERENCE ON DATA MINING, PROCEEDINGS | 2005年
关键词
D O I
10.1109/ICDM.2005.148
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Recommendation algorithms aim at proposing "next" pages to a user based on her current visit and the past users' navigational patterns. In the vast majority of related algorithms, only the usage data are used to produce recommendations, whereas the structural properties of the Web graph are ignored We claim that taking also into account the web structure and using link analysis algorithms ameliorates the quality of recommendations. In this paper we present UPR, a novel personalization algorithm which combines usage data and link analysis techniques for ranking and recommending web pages to the end user. Using the web site's structure and its usage data we produce personalized navigational graph synopses (prNG) to be used for applying UPR and produce personalized recommendations. Experimental results show that the accuracy of the recommendations is superior to pure usage-based approaches.
引用
收藏
页码:130 / 137
页数:8
相关论文
共 25 条
[1]  
AKTAS MS, 2004, P WEBKDD 2004 WORKSH
[2]  
BARAGLIA R, 2004, P ACM IEEE WI 04 C C
[3]  
Borges J, 2000, LECT NOTES COMPUT SC, V1836, P92
[4]   The anatomy of a large-scale hypertextual Web search engine [J].
Brin, S ;
Page, L .
COMPUTER NETWORKS AND ISDN SYSTEMS, 1998, 30 (1-7) :107-117
[5]  
BUCHNER AG, 1999, P WEBKDD 99 WORKSH A
[6]  
CADEZ I, 2000, P ACM KDD2000 C BOST
[7]  
DESHPANDE M, 2001, P 1 SIAM INT C DAT M
[8]  
Eirinaki M., 2004, WEB MINING ROADMAP
[9]   Web mining for Web personalization [J].
Eirinaki, Magdalini ;
Vazirgiannis, Michalis .
ACM Transactions on Internet Technology, 2003, 3 (01) :1-27
[10]  
EIRINAKI M, 2003, P ACM KDD2003 C AUG