Geometric K-homology with coefficients I: Z/kZ-cycles and Bockstein sequence

被引:12
作者
Deeley, Robin J. [1 ]
机构
[1] Univ Gottingen, Math Inst, D-37073 Gottingen, Germany
基金
加拿大自然科学与工程研究理事会;
关键词
K-homology; geometric cycles; Z; /; kZ-manifolds; index theory; RIEMANNIAN GEOMETRY; SPECTRAL ASYMMETRY; INDEX THEOREM; CSTAR-ALGEBRAS; OPERATORS; MANIFOLDS;
D O I
10.1017/is011010022jkt170
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We construct a Baum-Douglas type model for K-homology with coefficients in Z / kZ. The basic geometric object in a cycle is a spin(c) Z / kZ-manifold. The relationship between these cycles and the topological side of the Freed-Melrose index theorem is discussed in detail. Finally, using inductive limits, we construct geometric models for K-homology with coefficients in any countable abelian group.
引用
收藏
页码:537 / 564
页数:28
相关论文
共 34 条
[21]  
Higson N., 1990, INT J MATH, V1, P283
[22]  
Higson N, 2010, PURE APPL MATH Q, V6, P555
[23]  
Hirsch M.W., 1976, Graduate Texts in Mathematics, V33
[24]   A bordism-type description of homology [J].
Jakob, M .
MANUSCRIPTA MATHEMATICA, 1998, 96 (01) :67-80
[25]  
Kaminker J., 1992, OPERATOR ALGEBRAS TO, P82
[26]  
KASPAROV GG, 1975, MATH USSR IZV, V9, P751, DOI 10.1070/IM1975v009n0
[27]   TRANSVERSALITY CHARACTERISTIC CLASS AND LINKING CYCLES IN SURGERY THEORY [J].
MORGAN, JW ;
SULLIVAN, DP .
ANNALS OF MATHEMATICS, 1974, 99 (03) :463-544
[28]  
Rordam M., 2000, INTRO K THEORY C ALG, V49
[29]  
Rosenberg J., 2003, GEOM DEDICATA, V100, P5
[30]  
Schochet C., PACIFIC J MATH, V114, P447