Exact Current Statistics of the Asymmetric Simple Exclusion Process with Open Boundaries

被引:99
作者
Gorissen, Mieke [1 ]
Lazarescu, Alexandre [2 ]
Mallick, Kirone [2 ]
Vanderzande, Carlo [1 ,3 ]
机构
[1] Hasselt Univ, Fac Sci, B-3590 Diepenbeek, Belgium
[2] CEA Saclay, Inst Phys Theor, F-91191 Gif Sur Yvette, France
[3] Catholic Univ Louvain, Inst Theoret Fys, B-3001 Heverlee, Belgium
关键词
NONEQUILIBRIUM STEADY-STATES; BETHE-ANSATZ SOLUTION; PHASE-TRANSITIONS; FREE-ENERGY; MODEL; FLUCTUATIONS; PROBABILITY; ENSEMBLES;
D O I
10.1103/PhysRevLett.109.170601
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Nonequilibrium systems are often characterized by the transport of some quantity at a macroscopic scale, such as, for instance, a current of particles through a wire. The asymmetric simple exclusion process (ASEP) is a paradigm for nonequilibrium transport that is amenable to exact analytical solution. In the present work, we determine the full statistics of the current in the finite size open ASEP for all values of the parameters. Our exact analytical results are checked against numerical calculations using density matrix renormalization group techniques.
引用
收藏
页数:5
相关论文
共 61 条
[1]   Far-from-equilibrium transport with constrained resources [J].
Adams, D. A. ;
Schmittmann, B. ;
Zia, R. K. P. .
JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2008,
[2]   Probability Distribution of the Free Energy of the Continuum Directed Random Polymer in 1+1 Dimensions [J].
Amir, Gideon ;
Corwin, Ivan ;
Quastel, Jeremy .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 2011, 64 (04) :466-537
[3]   Fluctuations in stationary nonequilibrium states of irreversible processes [J].
Bertini, L ;
De Sole, A ;
Gabrielli, D ;
Jona-Lasinio, G ;
Landim, C .
PHYSICAL REVIEW LETTERS, 2001, 87 (04) :40601-1
[4]   Nonequilibrium steady states of matrix-product form: a solver's guide [J].
Blythe, R. A. ;
Evans, M. R. .
JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2007, 40 (46) :R333-R441
[5]   Current large deviations for asymmetric exclusion processes with open boundaries [J].
Bodineau, T ;
Derrida, B .
JOURNAL OF STATISTICAL PHYSICS, 2006, 123 (02) :277-300
[6]   Current fluctuations in nonequilibrium diffusive systems: An additivity principle [J].
Bodineau, T ;
Derrida, B .
PHYSICAL REVIEW LETTERS, 2004, 92 (18) :180601-1
[7]   Non-equilibrium statistical mechanics: from a paradigmatic model to biological transport [J].
Chou, T. ;
Mallick, K. ;
Zia, R. K. P. .
REPORTS ON PROGRESS IN PHYSICS, 2011, 74 (11)
[8]   TABLEAUX COMBINATORICS FOR THE ASYMMETRIC EXCLUSION PROCESS AND ASKEY-WILSON POLYNOMIALS [J].
Corteel, Sylvie ;
Williams, Lauren K. .
DUKE MATHEMATICAL JOURNAL, 2011, 159 (03) :385-415
[9]   THE KARDAR-PARISI-ZHANG EQUATION AND UNIVERSALITY CLASS [J].
Corwin, Ivan .
RANDOM MATRICES-THEORY AND APPLICATIONS, 2012, 1 (01)
[10]   Bethe ansatz solution of the asymmetric exclusion process with open boundaries [J].
de Gier, J ;
Essler, FHL .
PHYSICAL REVIEW LETTERS, 2005, 95 (24)