On the classical d-orthogonal polynomials defined by certain generating functions, II

被引:30
作者
Ben Cheikh, Y [1 ]
Douak, K
机构
[1] Fac Sci Monastir, Dept Math, Monastir 5019, Tunisia
[2] Univ Paris 06, Anal Numer Lab, F-75252 Paris 05, France
关键词
orthogonal polynomials; multiple orthogonal polynomials; d-orthogonal polynomials; hypergeometric polynomials; recurrence relations; differential equations;
D O I
10.36045/bbms/1102714790
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This paper is a direct sequel to [5]. The present part deals With the problem of finding all d-orthugonal polynomial sets generated by G(x,t) = e(t)psi(xt). The resulting polynomials reduce to Laguerre polynomials for d=1 and to two-orthogonal polynomials associated with MacDonald functions for d=2, recently considered by (lie authors [6] and by Van Assche and Yakubovich [36]. Various properties for the obtained polynomials are singled out.
引用
收藏
页码:591 / 605
页数:15
相关论文
共 37 条
[1]  
ABDULHALIM NA, 1964, REND SEMINARIO MAT U, V34, P176
[2]  
Al- Salam W. A., 1972, SIAM J MATH ANAL, V3, P65
[3]  
[Anonymous], GIORN MAT BATTAGLINI
[4]   Multiple orthogonal polynomials [J].
Aptekarev, AI .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 1998, 99 (1-2) :423-447
[5]  
BATEMAN H, 1936, DUKE MATH J, V2, P569, DOI DOI 10.1215/S0012-7094-36-00248-X
[6]   On the classical d-orthogonal polynomials defined by certain generating functions, I [J].
Ben Cheikh, Y ;
Douak, K .
BULLETIN OF THE BELGIAN MATHEMATICAL SOCIETY-SIMON STEVIN, 2000, 7 (01) :107-124
[7]  
Ben Cheikh Y., 2000, Methods Appl. Anal., V7, P641
[8]   GENERATING FUNCTIONS OF JACOBI AND RELATED POLYNOMIALS [J].
BRAFMAN, F .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1951, 2 (06) :942-949
[9]  
Brafman F., 1957, Canad. J. Math., V9, P180
[10]  
Chaundy T. W., 1943, Quart. J. Math. Oxford Ser., V14, P55