Organic Hole-Transport Layers for Efficient, Stable, and Scalable Inverted Perovskite Solar Cells

被引:200
|
作者
Yao, Yiguo [1 ]
Cheng, Caidong [1 ]
Zhang, Chenyang [1 ]
Hu, Hanlin [2 ]
Wang, Kai [1 ]
De Wolf, Stefaan [3 ,4 ]
机构
[1] Northwestern Polytech Univ, Inst Flexible Elect IFE, Xian 710072, Peoples R China
[2] Shenzhen Polytech, Hoffman Inst Adv Mat, 7098 Liuxian Blvd, Shenzhen 518055, Peoples R China
[3] King Abdullah Univ Sci & Technol KAUST, Div Phys Sci & Engn, Thuwal 239556900, Saudi Arabia
[4] King Abdullah Univ Sci & Technol KAUST, KAUST Solar Ctr, Thuwal 239556900, Saudi Arabia
关键词
inverted perovskite solar cells; organic hole-transporting layers; polymer; self-assembled monolayers; small molecules; SOLUTION-PROCESSED PEROVSKITE; SELF-ASSEMBLED MONOLAYERS; PLANAR PEROVSKITE; HIGHLY EFFICIENT; CONJUGATED POLYELECTROLYTE; HIGH-MOBILITY; PERFORMANCE; PEDOTPSS; OXIDE; ENHANCEMENT;
D O I
10.1002/adma.202203794
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Hole-transporting layers (HTLs) are an essential component in inverted, p-i-n perovskite solar cells (PSCs) where they play a decisive role in extraction and transport of holes, surface passivation, perovskite crystallization, device stability, and cost. Currently, the exploration of efficient, stable, highly transparent and low-cost HTLs is of vital importance for propelling p-i-n PSCs toward commercialization. Compared to their inorganic counterparts, organic HTLs offer multiple advantages such as a tunable bandgap and energy level, easy synthesis and purification, solution processability, and overall low cost. Here, recent progress of organic HTLs, including conductive polymers, small molecules, and self-assembled monolayers, as utilized in inverted PSCs is systematically reviewed and summarized. Their molecular structure, hole-transport properties, energy levels, and relevant device properties and resulting performances are presented and analyzed. A summary of design principles and a future outlook toward highly efficient organic HTLs in inverted PSCs is proposed. This review aims to inspire further innovative development of novel organic HTLs for more efficient, stable, and scalable inverted PSCs.
引用
收藏
页数:31
相关论文
共 50 条
  • [1] A fluorinated polythiophene hole-transport material for efficient and stable perovskite solar cells
    Jeong, Inyoung
    Jo, Jea Woong
    Bae, Seunghwan
    Son, Hae Jung
    Ko, Min Jae
    DYES AND PIGMENTS, 2019, 164 : 1 - 6
  • [2] Progress of Hole-Transport Layers in Mixed Sn-Pb Perovskite Solar Cells
    Sun, Yujia
    Lai, Yibin
    Yang, Yang
    SMALL, 2024, 20 (49)
  • [3] Approaching optimal hole transport layers by an organic monomolecular strategy for efficient inverted perovskite solar cells
    Li, Wang
    Liu, Hui
    Liu, Changwen
    Kong, Weiguang
    Chen, Hong
    Wang, Weijun
    Zhang, Haichao
    Zhang, Xian
    Cheng, Chun
    JOURNAL OF MATERIALS CHEMISTRY A, 2020, 8 (32) : 16560 - 16569
  • [4] Hole-Transport Management Enables 23%-Efficient and Stable Inverted Perovskite Solar Cells with 84% Fill Factor
    Liu, Liming
    Ma, Yajie
    Wang, Yousheng
    Ma, Qiaoyan
    Wang, Zixuan
    Yang, Zigan
    Wan, Meixiu
    Mahmoudi, Tahmineh
    Hahn, Yoon-Bong
    Mai, Yaohua
    NANO-MICRO LETTERS, 2023, 15 (01)
  • [5] Efficient inverted planar perovskite solar cells based on inorganic hole-transport layers from nickel-containing organic sol
    Zhang, Weina
    Tang, Jie
    Wu, Jihuai
    Lan, Zhang
    FUNCTIONAL MATERIALS LETTERS, 2019, 12 (01)
  • [6] An inorganic hole-transport material of CuInSe2 for stable and efficient perovskite solar cells
    Zhang, Yan
    Zhang, Zhenlong
    Liu, Yanyan
    Liu, Yuefeng
    Gan, Huiping
    Mao, Yanli
    ORGANIC ELECTRONICS, 2019, 67 : 168 - 174
  • [7] Furrowed hole-transport layer using argon plasma in an inverted perovskite solar cell
    Li, Xiao-Mei
    Wang, Kai-li
    Jiang, Yu-Rong
    Yang, Ying-Guo
    Gao, Xing-Yu
    Ma, Heng
    NEW JOURNAL OF CHEMISTRY, 2019, 43 (36) : 14625 - 14633
  • [8] Surface passivation of perovskite with organic hole transport materials for highly efficient and stable perovskite solar cells
    Fu, Yajie
    Li, Yang
    Xing, Guichuan
    Cao, Derong
    MATERIALS TODAY ADVANCES, 2022, 16
  • [9] Poly(3,4-Ethylenedioxythiophene) as a Hole-Transport Layer for Highly Efficient and Stable Inverted Perovskite Solar Cells
    Gu, Wei -Min
    Jiang, Ke-Jian
    Jiao, Xinning
    Wu, Limei
    Gao, Cai-Yan
    Fan, Xin-Heng
    Yang, Lian-Ming
    Wang, Qing
    Song, Yanlin
    CHEMICAL ENGINEERING JOURNAL, 2024, 485
  • [10] Small Molecular Organic Hole Transport Layer for Efficient Inverted Perovskite Solar Cells
    Ahmmed, Shamim
    Karim, Md. Abdul
    He, Yulu
    Cao, Siliang
    Kayesh, Md. Emrul
    Matsuishi, Kiyoto
    Islam, Ashraful
    SOLAR RRL, 2025,