Literature Review on Big Data Analytics and Demand Modeling in Supply Chain

被引:0
作者
Kumar, Puneeth T. [1 ]
Manjunath, T. N. [2 ]
Hegadi, Ravindra S. [3 ]
机构
[1] BMS Inst Technol & Management, Bengaluru, India
[2] BMS Inst Technol & Management, Dept ISE, Bengaluru, India
[3] Solapur Univ, Dept Comp Sci, Solapur, Maharashtra, India
来源
2018 3RD INTERNATIONAL CONFERENCE ON ELECTRICAL, ELECTRONICS, COMMUNICATION, COMPUTER, AND OPTIMIZATION TECHNIQUES (ICEECCOT - 2018) | 2018年
关键词
Supply chain; Demand modeling; Big data Analytics; Forecasting methods; supply chain framework;
D O I
暂无
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
New digital technologies have been introduced into our business and social environments, causing a major change that is recognized as the digital transformation in recent years. While environmental shifts suggest that most of the organization starts using advanced technologies such as Internet of Things (IoT), Mobile applications, Blackchain, Intelligence Things, catboats and many more in their supply chain planning to gain an early competitive advantage and these technologies generates enormous amount of data that the traditional business intelligence system difficult to handle processing of vast data in real-time or nearly real time causes abstraction to the insight discovery, demand modeling and supply chain optimization, Big Data initiatives for demand modeling and supply chain optimization promise to answer these challenges by incorporating various services, methods and tools for more agile and adaptably analytics and decision making, there by this paper focus on reviewing the level of analytics and the forecasting methods being used in the supply chain, understating the fundamentals of supply chain and role of demand modeling, there by proposing a high level framework for supply chain analytics in the context of big data with the knowledge of data science, artificial intelligence, big data echo system and supply chain.
引用
收藏
页码:1246 / 1252
页数:7
相关论文
共 50 条
  • [21] Exploring Big Data Analytics for Supply Chain Management
    Cheng, Otto K. M.
    Lau, Raymond Y. K.
    2016 INTERNATIONAL CONFERENCE ON MANAGEMENT, ECONOMICS AND SOCIAL DEVELOPMENT (ICMESD 2016), 2016, : 1111 - 1117
  • [22] Predictive big data analytics for supply chain demand forecasting: methods, applications, and research opportunities
    Mahya Seyedan
    Fereshteh Mafakheri
    Journal of Big Data, 7
  • [23] Predictive big data analytics for supply chain demand forecasting: methods, applications, and research opportunities
    Seyedan, Mahya
    Mafakheri, Fereshteh
    JOURNAL OF BIG DATA, 2020, 7 (01)
  • [24] Big data analytics in flexible supply chain networks
    Zheng, Jing
    Alzaman, Chaher
    Diabat, Ali
    COMPUTERS & INDUSTRIAL ENGINEERING, 2023, 178
  • [25] Quality Analytics in a Big Data Supply Chain Commodity Data Analytics for Quality Engineering
    Tan, Julian S. K.
    Ang, Ai Kiar
    Lu, Liu
    Gan, Sheena W. Q.
    Corral, Marilyn G.
    PROCEEDINGS OF THE 2016 IEEE REGION 10 CONFERENCE (TENCON), 2016, : 3455 - 3463
  • [26] Big Data Analytics on The Supply Chain Management: A Significant Impact
    Handanga, Suilety
    Bernardino, Jorge
    Pedrosa, Isabel
    PROCEEDINGS OF 2021 16TH IBERIAN CONFERENCE ON INFORMATION SYSTEMS AND TECHNOLOGIES (CISTI'2021), 2021,
  • [27] A note on big data analytics capability development in supply chain
    Jha, Ashish Kumar
    Agi, Maher A. N.
    Ngai, Eric W. T.
    DECISION SUPPORT SYSTEMS, 2020, 138
  • [28] Big Data Analytics applied in Supply Chain Management: A Systematic Mapping Study
    de Souza, Thiago Vieira
    Farias, Kleinner
    Bischoff, Vinicius
    PROCEEDINGS OF 16TH BRAZILIAN SYMPOSIUM ON INFORMATION SYSTEMS ON DIGITAL TRANSFORMATION AND INNOVATION, SBSI 2020, 2020,
  • [29] Big data analytics and application for logistics and supply chain management
    Govindan, Kannan
    Cheng, T. C. E.
    Mishra, Nishikant
    Shukla, Nagesh
    TRANSPORTATION RESEARCH PART E-LOGISTICS AND TRANSPORTATION REVIEW, 2018, 114 : 343 - 349
  • [30] Data science and big data analytics: a systematic review of methodologies used in the supply chain and logistics research
    Jahani, Hamed
    Jain, Richa
    Ivanov, Dmitry
    ANNALS OF OPERATIONS RESEARCH, 2023,