Witt groups of smooth projective quadrics

被引:4
作者
Xie, Heng [1 ,2 ]
机构
[1] Max Planck Inst Math, Vivatsgasse 7, D-53111 Bonn, Germany
[2] Berg Univ Wuppertal, Fachgrp Math & Informat, D-42119 Wuppertal, Germany
基金
英国工程与自然科学研究理事会;
关键词
Witt groups; Quadrics; Semi-orthogonal decomposition; Clifford algebras; HERMITIAN K-THEORY; LOCALIZATION; CATEGORIES; ALGEBRAS;
D O I
10.1016/j.aim.2019.01.038
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let k be a commutative ring containing 1/2. In this paper, we construct exact sequences connecting Witt groups of smooth projective quadrics over k and Clifford algebras. The exact sequences have an application to a classical problem in quadratic form theory: the Witt kernel of function fields of quadrics. We also apply the exact sequences to compute Witt groups of certain kinds of smooth projective quadrics. (C) 2019 Elsevier Inc. All rights reserved.
引用
收藏
页码:70 / 123
页数:54
相关论文
共 39 条
[1]   VECTOR FIELDS ON SPHERES [J].
ADAMS, JF .
ANNALS OF MATHEMATICS, 1962, 75 (03) :603-&
[2]  
[Anonymous], 1971, Journal of Pure and Applied Algebra
[3]  
[Anonymous], 1978, K THEORY INTRO, DOI DOI 10.1007/978-3-540-79890-3
[4]  
Atiyah M., 1964, Topology, V3, P3, DOI 10.1016/0040-9383(64)90003-5
[5]   Triangular Witt groups - Part I: The 12-term localization exact sequence [J].
Balmer, P .
K-THEORY, 2000, 19 (04) :311-363
[6]   Shifted Witt groups of semi-local rings [J].
Balmer, P ;
Preeti, R .
MANUSCRIPTA MATHEMATICA, 2005, 117 (01) :1-27
[7]   A Gersten-Witt spectral sequence for regular schemes [J].
Balmer, P ;
Walter, C .
ANNALES SCIENTIFIQUES DE L ECOLE NORMALE SUPERIEURE, 2002, 35 (01) :127-152
[8]  
Bass H., 1968, Algebraic K-theory
[9]  
BONDAL AI, 1989, MATH USSR IZV+, V53, P23
[10]  
BONDAL AI, 1989, MATH USSR IZV+, V53, P519