Infinite families of formulas for sums of integer squares

被引:0
作者
Masri, Nadia [1 ]
机构
[1] Univ Illinois, Dept Math, Urbana, IL 61801 USA
关键词
Eisenstein series; Jacobi theta functions; modular forms; sums of integer squares;
D O I
10.1142/S1793042108001560
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In 2002, Milne [5, 6] obtained ten infinite families of formulas for the sums of integer squares. Recently, Long and Yang [4] reproved four of these identities using modular forms on various subgroups. In this paper, we prove the remaining six, and show that all of the identities can be proved by interpreting them in terms of modular forms for Gamma(0)(4).
引用
收藏
页码:613 / 626
页数:14
相关论文
共 9 条