Constrained robust model predicted control of discrete-time Markov jump linear systems

被引:17
作者
Lopes, Rosileide O. [1 ,2 ]
Mendes, Eduardo M. A. M. [2 ,3 ]
Torres, Leonardo A. B. [2 ,3 ]
Palhares, Reinaldo M. [2 ,3 ]
机构
[1] Univ Fed Itajuba, Rua Irma Ivone Drumond 200,Dist Ind 2, BR-35903087 Itabira, MG, Brazil
[2] Univ Fed Minas Gerais, Grad Program Elect Engn, Av Antonio Carlos 6627, BR-31270901 Belo Horizonte, MG, Brazil
[3] Univ Fed Minas Gerais, Dept Elect Engn, Av Antonio Carlos 6627, BR-31270901 Belo Horizonte, MG, Brazil
关键词
predictive control; uncertain systems; Markov processes; control system synthesis; linear systems; linear matrix inequalities; stochastic systems; robust control; discrete time systems; state feedback; multistep mode-dependent state-feedback control design; discrete-time Markov jump linear systems; linear matrix inequality conditions; MPC; robust model; model predictive control; uncertain system; LMI; transition probability; STABILITY; SUBJECT;
D O I
10.1049/iet-cta.2018.5543
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This study is concerned with the problem of designing a robust model predictive control (MPC) for a class of uncertain discrete-time Markov jump linear systems. The main contribution is a set of linear matrix inequality (LMI) conditions obtained under new control policies for the unconstrained as well as the constrained MPC when uncertainties are present both in the system's matrices and in the transition probabilities of the modes. For the constrained MPC, hard constraints are considered over the input control and the states and results are extended to the so-called multi-step mode-dependent state-feedback control design. To illustrate the improvements obtained with the new set of LMI conditions, numerical simulations are carried out and compared with a recent reference in the literature.
引用
收藏
页码:517 / 525
页数:9
相关论文
共 28 条
[1]  
[Anonymous], 2017, MOSEK OPT TOOLB MATL
[2]   Stabilizing Model Predictive Control of Stochastic Constrained Linear Systems [J].
Bernardini, Daniele ;
Bemporad, Alberto .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2012, 57 (06) :1468-1480
[3]  
Campo P. J., 1987, Proceedings of the 1987 American Control Conference, P1021
[4]  
Costa O. L. V., 2006, Discrete-Time Markov Jump Linear Systems
[5]   Stochastic linear Model Predictive Control with chance constraints - A review [J].
Farina, Marcello ;
Giulioni, Luca ;
Scattolini, Riccardo .
JOURNAL OF PROCESS CONTROL, 2016, 44 :53-67
[6]   Model predictive control for constrained networked systems subject to data losses [J].
Franze, Giuseppe ;
Tedesco, Francesco ;
Famularo, Domenico .
AUTOMATICA, 2015, 54 :272-278
[7]   Affine parameter-dependent Lyapunov functions and real parametric uncertainty [J].
Gahinet, P ;
Apkarian, P ;
Chilali, M .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1996, 41 (03) :436-442
[8]   Robust constrained model predictive control using linear matrix inequalities [J].
Kothare, MV ;
Balakrishnan, V ;
Morari, M .
AUTOMATICA, 1996, 32 (10) :1361-1379
[9]   Regional pole placement of wind turbine generator system via a Markovian approach [J].
Lin, Zhongwei ;
Liu, Jizhen ;
Zhang, Weihai ;
Niu, Yuguang .
IET CONTROL THEORY AND APPLICATIONS, 2016, 10 (15) :1771-1781
[10]   Model Predictive Control for Freeway Networks Based on Multi-Class Traffic Flow and Emission Models [J].
Liu, Shuai ;
Hellendoorn, Hans ;
De Schutter, Bart .
IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2017, 18 (02) :306-320