Phosphate isosteres in medicinal chemistry

被引:68
作者
Rye, CS [1 ]
Baell, JB [1 ]
机构
[1] Walter & Eliza Hall Inst Med Res, Ctr Biotechnol, Div Struct Biol, Med Chem Grp, Bundoora, Vic 3086, Australia
关键词
inhibitor; isostere; mimetic; mimic; phosphatase; phosphate; phosphotyrosine; phosphotyrosine binding protein;
D O I
10.2174/092986705774933452
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The phosphate group is at the heart of an enormous number of biological processes. The simple phosphorylation or dephosphorylation of a protein can have a wide range of consequences, including effects on its biological activity, its interaction with other proteins, and on its subcellular location. Abnormal levels of protein phosphorylation have been linked to a wide range of diseases including cancer and diabetes. Consequently, proteins that recognise the phosphate moiety have become an attractive target for therapeutic development. The most prevalent medicinal chemistry research examines the interactions of phosphorylated tyrosine residues; however, the role of phosphate groups on serine or threonine residues, in nucleotides, DNA and RNA, on sugars, and lipid mediators such as lysophosphatidic acid should not be overlooked. Investigations have focused on the non-catalytic phosphotyrosine-recognising domains such as Src homology 2 (SH2) and phosphotyrosine binding (PTB) domains, as well as catalytic proteins such as protein tyrosine phosphatase 1B (PTP1B). The utilisation of the phosphate moiety as part of an inhibitor is severely limited by the enzymatic lability and poor cellular bioavailability of this highly charged recognition element. The development of phosphate isosteres attempts to address these issues by introducing a non-scissile bond and utilizing groups with less charge that are still able to interact favourably with the target protein in much the same way as the phosphate group does. Many phosphate mimics retain the phosphorus atom such as in the highly successful fluoromethylenephosphonates, whereas others have lost the tetrahedral phosphate geometry and are based on the combination of one or more carboxylate groups that generally reduce the overall charge of the molecule. This review focuses on the recent developments and the use of phosphate isosteres in medicinal chemistry, covering roughly the past four years.
引用
收藏
页码:3127 / 3141
页数:15
相关论文
共 50 条
[21]   Deguelin's Anticancer Bioactivity: Challenges and Opportunities in Medicinal Chemistry [J].
Jiang, Wenjie ;
Zeng, Jing ;
Guo, Li ;
Shi, Jianyou ;
Lei, Yang .
FRONTIERS IN PHARMACOLOGY, 2025, 16
[22]   THE CHEMISTRY OF AQUATIC PHOSPHATE - INORGANIC PROCESSES IN RIVERS [J].
FOX, LE .
HYDROBIOLOGIA, 1993, 253 (1-3) :1-16
[23]   Isosteres of hydroxypyridinethione as drug-like pharmacophores for metalloenzyme inhibition [J].
Adamek, Rebecca N. ;
Credille, Cy V. ;
Dick, Benjamin L. ;
Cohen, Seth M. .
JOURNAL OF BIOLOGICAL INORGANIC CHEMISTRY, 2018, 23 (07) :1129-1138
[24]   Isosteres of hydroxypyridinethione as drug-like pharmacophores for metalloenzyme inhibition [J].
Rebecca N. Adamek ;
Cy V. Credille ;
Benjamin L. Dick ;
Seth M. Cohen .
JBIC Journal of Biological Inorganic Chemistry, 2018, 23 :1129-1138
[25]   Preparative Scale Applications of C-H Activation in Medicinal Chemistry [J].
de Jesus, Rita ;
Hiesinger, Kerstin ;
van Gemmeren, Manuel .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2023, 62 (45)
[26]   Targeting amyloidogenic proteins through cyclic peptides - A medicinal chemistry perspective [J].
Zargaham, Muhammad Kazim ;
Ibrahim, Ahsan ;
Ahmed, Madiha ;
Babar, Mustafeez Mujtaba ;
Rajadas, Jayakumar .
BIOORGANIC & MEDICINAL CHEMISTRY, 2025, 123
[27]   Medicinal chemistry strategies targeting PRMT5 for cancer therapy [J].
Fu, Siyu ;
Zheng, Qinwen ;
Zhang, Dan ;
Lin, Congcong ;
Ouyang, Liang ;
Zhang, Jifa ;
Chen, Lei .
EUROPEAN JOURNAL OF MEDICINAL CHEMISTRY, 2022, 244
[28]   Hydroxamic Acid Derivatives: From Synthetic Strategies to Medicinal Chemistry Applications [J].
Citarella, Andrea ;
Moi, Davide ;
Pinzi, Luca ;
Bonanni, Davide ;
Rastelli, Giulio .
ACS OMEGA, 2021, 6 (34) :21843-21849
[29]   Medicinal Chemistry of Quinolines As Emerging Anti-inflammatory Agents: An Overview [J].
Mukherjee, S. ;
Pal, M. .
CURRENT MEDICINAL CHEMISTRY, 2013, 20 (35) :4386-4410
[30]   Medicinal Chemistry of Mid-sized Molecules on Biologically Active Peptides [J].
Takayama, Kentaro ;
Hayashi, Yoshio .
JOURNAL OF SYNTHETIC ORGANIC CHEMISTRY JAPAN, 2015, 73 (07) :737-748