Deformation behavior of nanocrystalline and ultrafine-grained CoCrCuFeNi high-entropy alloys

被引:22
作者
Nam, Seungjin [1 ]
Hwang, Jun Yeon [2 ]
Jeon, Jonggyu [3 ]
Park, Jihye [4 ]
Bae, Donghyun [3 ]
Kim, Moon J. [5 ]
Kim, Jae-Hun [1 ]
Choi, Hyunjoo [1 ]
机构
[1] Kookmin Univ, Sch Mat Sci & Engn, Seoul 02707, South Korea
[2] Korea Inst Sci & Technol, Inst Adv Composite Mat, Jeonbuk 55324, South Korea
[3] Yonsei Univ, Dept Mat Sci & Engn, Seoul 03722, South Korea
[4] Korea Inst Sci & Technol, High Temp Energy Mat Res Ctr, Seoul 02792, South Korea
[5] Univ Texas Dallas, Dept Mat Sci & Engn, Richardson, TX 75080 USA
基金
新加坡国家研究基金会;
关键词
alloy; powder metallurgy; microstructure; MECHANICAL-PROPERTIES; STRENGTHENING MECHANISMS; PHASE-SEPARATION; MICROSTRUCTURE; STABILITY; DUCTILITY; EVOLUTION; NICKEL;
D O I
10.1557/jmr.2018.477
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Nanocrystalline (NC) and ultrafine-grained (UFG) CoCrCuFeNi high-entropy alloy (HEA) with grain size ranging between 59 and 386 nm was produced via powder metallurgy and heat treatment. The as-sintered HEA exhibited two face-centered cubic (FCC) phases (CoCrFeNi-rich and Cu-rich phases) and a small grain size (59 nm), whereas the alloy after heat treatment at 1000 degrees C exhibited a CoCuFeNi-rich phase with FCC structure and relatively larger grain size (386 nm). Moreover, the yield strength decreased from 1930 to 883 MPa, and plastic strain to failure increased by 8-32%. In terms of microstructural evolution, grain boundary strengthening coupled with lattice distortion was the dominant strengthening mechanism for NC HEAs. Furthermore, the coefficient for boundary strengthening was higher in the HEAs than in the corresponding pure elemental metals with FCC structure, possibly because of significant lattice distortion. The UFG HEAs exhibited high strength and good ductility because of the activation of dislocation.
引用
收藏
页码:720 / 731
页数:12
相关论文
共 55 条
[1]  
[Anonymous], 1988, Transit. Met. Alloys
[2]  
ARKO AC, 1971, METALL TRANS, V2, P1875
[3]   PLASTIC DEFORMATION OF POLYCRYSTALLINE AGGREGATES [J].
ARMSTRONG, R ;
DOUTHWAITE, RM ;
CODD, I ;
PETCH, NJ .
PHILOSOPHICAL MAGAZINE, 1962, 7 (73) :45-&
[4]   A combinatorial assessment of AlxCrCuFeNi2(0 < x < 1.5) complex concentrated alloys: Microstructure, microhardness, and magnetic properties [J].
Borkar, T. ;
Gwalani, B. ;
Choudhuri, D. ;
Mikler, C. V. ;
Yannetta, C. J. ;
Chen, X. ;
Ramanujan, R. V. ;
Styles, M. J. ;
Gibson, M. A. ;
Banerjee, R. .
ACTA MATERIALIA, 2016, 116 :63-76
[5]   Hardness and strain rate sensitivity of nanocrystalline Cu [J].
Chen, J ;
Lu, L ;
Lu, K .
SCRIPTA MATERIALIA, 2006, 54 (11) :1913-1918
[6]   Alloying behavior, microstructure and mechanical properties in a FeNiCrCo0.3Al0.7 high entropy alloy [J].
Chen, Weiping ;
Fu, Zhiqiang ;
Fang, Sicong ;
Xiao, Huaqiang ;
Zhu, Dezhi .
MATERIALS & DESIGN, 2013, 51 :854-860
[7]  
Courtney TH., 2005, Mechanical Behavior of Materials, V2
[8]   Relationship between the widths of supercooled liquid regions and bond parameters of Mg-based bulk metallic glasses [J].
Fang, SS ;
Xiao, X ;
Lei, X ;
Li, WH ;
Dong, YD .
JOURNAL OF NON-CRYSTALLINE SOLIDS, 2003, 321 (1-2) :120-125
[9]   NANOCRYSTALLINE METALS PREPARED BY HIGH-ENERGY BALL MILLING [J].
FECHT, HJ ;
HELLSTERN, E ;
FU, Z ;
JOHNSON, WL .
METALLURGICAL TRANSACTIONS A-PHYSICAL METALLURGY AND MATERIALS SCIENCE, 1990, 21 (09) :2333-2337
[10]   Microstructure and strengthening mechanisms in an FCC structured single-phase nanocrystalline Co25Ni25Fe25Al7.5Cu17.5 high-entropy alloy [J].
Fu, Zhiqiang ;
Chen, Weiping ;
Wen, Haiming ;
Zhang, Dalong ;
Chen, Zhen ;
Zheng, Baolong ;
Zhou, Yizhang ;
Lavernia, Enrique J. .
ACTA MATERIALIA, 2016, 107 :59-71