General decay of solutions for a weak viscoelastic equation with acoustic boundary conditions

被引:58
作者
Liu, Wenjun [1 ]
Sun, Yun [1 ]
机构
[1] Nanjing Univ Informat Sci & Technol, Coll Math & Stat, Nanjing 210044, Jiangsu, Peoples R China
来源
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK | 2014年 / 65卷 / 01期
关键词
General decay; Weak viscoelastic equation; Acoustic boundary condition; WAVE-EQUATIONS; EXISTENCE; STABILITY; ENERGY;
D O I
10.1007/s00033-013-0328-y
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we consider the weak viscoelastic equation with a homogeneous Dirichlet condition on a portion of the boundary and acoustic boundary conditions on the rest of the boundary. We establish a general decay result, which depends on the behavior of both alpha and g, by using the perturbed energy functional technique. This is an extension and improvement of the previous result from Park and Park (Nonlinear Anal 74(3):993-998, 2011) (i.e., the similar problem with ) to the time-dependent viscoelastic case.
引用
收藏
页码:125 / 134
页数:10
相关论文
共 26 条
[1]  
[Anonymous], 2004, ELECTRON J DIFFER EQ
[2]   SPECTRAL PROPERTIES OF AN ACOUSTIC BOUNDARY-CONDITION [J].
BEALE, JT .
INDIANA UNIVERSITY MATHEMATICS JOURNAL, 1976, 25 (09) :895-917
[3]   ACOUSTIC BOUNDARY-CONDITIONS [J].
BEALE, JT ;
ROSENCRA.SI .
BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1974, 80 (06) :1276-1278
[4]   ACOUSTIC SCATTERING FROM LOCALLY REACTING SURFACES [J].
BEALE, JT .
INDIANA UNIVERSITY MATHEMATICS JOURNAL, 1977, 26 (02) :199-222
[5]   Existence and decay of solutions of a viscoelastic equation with a nonlinear source [J].
Berrimi, S ;
Messaoudi, SA .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2006, 64 (10) :2314-2331
[6]   General decay rate estimates for viscoelastic dissipative systems [J].
Cavalcanti, M. M. ;
Cavalcanti, V. N. Domingos ;
Martinez, P. .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2008, 68 (01) :177-193
[7]   Frictional versus viscoelastic damping in a semilinear wave equation [J].
Cavalcanti, MM ;
Oquendo, HP .
SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2003, 42 (04) :1310-1324
[8]   Existence and uniform decay for a non-linear viscoelastic equation with strong damping [J].
Cavalcanti, MM ;
Cavalcanti, VND ;
Ferreira, J .
MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2001, 24 (14) :1043-1053
[9]  
DAFERMOS CM, 1970, ARCH RATION MECH AN, V37, P297
[10]   AN ABSTRACT VOLTERRA EQUATION WITH APPLICATIONS TO LINEAR VISCOELASTICITY [J].
DAFERMOS, CM .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1970, 7 (03) :554-&