Micromagnetics of antiskyrmions in ultrathin films

被引:62
作者
Camosi, Lorenzo [1 ]
Rougemaille, Nicolas [1 ]
Fruchart, Olivier [2 ]
Vogel, Jan [1 ]
Rohart, Stanislas [3 ]
机构
[1] Univ Grenoble Alpes, CNRS, Inst Neel, F-38000 Grenoble, France
[2] Univ Grenoble Alpes, CNRS, CEA, Grenoble INP,INAC SPINTEC, F-38000 Grenoble, France
[3] Univ Paris Saclay, Univ Paris Sud, CNRS UMR 8502, Lab Phys Solides, F-91405 Orsay, France
关键词
MAGNETIC SKYRMION; DYNAMICS; LATTICE; STATES;
D O I
10.1103/PhysRevB.97.134404
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We present a combined analytical and numerical micromagnetic study of the equilibrium energy, size, and shape of antiskyrmionic magnetic configurations. Antiskyrmions can be stabilized when the Dzyaloshinskii-Moriya interaction has opposite signs along two orthogonal in-plane directions, breaking the magnetic circular symmetry. We compare the equilibrium energy, size, and shape of antiskyrmions and skyrmions that are stabilized in environments with anisotropic and isotropic Dzyaloshinskii-Moriya interactions, respectively, but with the same strength of the magnetic interactions. When the dipolar interactions are neglected, the skyrmion and the antiskyrmion have the same energy, shape, and size in their respective environments. However, when dipolar interactions are considered, the energy of the antiskyrmion is strongly reduced, and its equilibrium size increases with respect to that of the skyrmion. While the skyrmion configuration shows homochiral Neel magnetization rotations, antiskyrmions show partly Neel and partly Bloch rotations. The latter do not produce magnetic charges and thus cost less dipolar energy. Both magnetic configurations are stable when the magnetic energies almost cancel each other, which means that a small variation of one parameter can drastically change their configurations, sizes, and energies.
引用
收藏
页数:7
相关论文
共 41 条
[1]  
BELAVIN AA, 1975, JETP LETT+, V22, P245
[2]  
Bernand-Mantel A., ARXIV171203154
[3]   Comment on "Path to collapse for an isolated Neel skyrmion" [J].
Bessarab, P. F. .
PHYSICAL REVIEW B, 2017, 95 (13)
[4]   Method for finding mechanism and activation energy of magnetic transitions, applied to skyrmion and antivortex annihilation [J].
Bessarab, Pavel F. ;
Uzdin, Valery M. ;
Jonsson, Hannes .
COMPUTER PHYSICS COMMUNICATIONS, 2015, 196 :335-347
[5]   Chiral symmetry breaking in magnetic thin films and multilayers -: art. no. 037203 [J].
Bogdanov, AN ;
Rössler, UK .
PHYSICAL REVIEW LETTERS, 2001, 87 (03) :37203-1
[6]  
BOGDANOV AN, 1989, ZH EKSP TEOR FIZ+, V95, P178
[7]   Room-temperature chiral magnetic skyrmions in ultrathin magnetic nanostructures [J].
Boulle, Olivier ;
Vogel, Jan ;
Yang, Hongxin ;
Pizzini, Stefania ;
Chaves, Dayane de Souza ;
Locatelli, Andrea ;
Mentes, Tevfik Onur ;
Sala, Alessandro ;
Buda-Prejbeanu, Liliana D. ;
Klein, Olivier ;
Belmeguenai, Mohamed ;
Roussigne, Yves ;
Stashkevich, Andrey ;
Cherif, Salim Mourad ;
Aballe, Lucia ;
Foerster, Michael ;
Chshiev, Mairbek ;
Auffret, Stephane ;
Miron, Ioan Mihai ;
Gaudin, Gilles .
NATURE NANOTECHNOLOGY, 2016, 11 (05) :449-+
[8]   Anisotropic Dzyaloshinskii-Moriya interaction in ultrathin epitaxial Au/Co/W(110) [J].
Camosi, Lorenzo ;
Rohart, Stanislas ;
Fruchart, Olivier ;
Pizzini, Stefania ;
Belmeguenai, Mohamed ;
Roussigne, Yves ;
Stashkevich, Andrei ;
Cherif, Salim Mourad ;
Ranno, Laurent ;
de Santis, Maurizio ;
Vogel, Jan .
PHYSICAL REVIEW B, 2017, 95 (21)
[9]   Comparison of Langevin dynamics and direct energy barrier computation [J].
Dittrich, R ;
Schrefl, T ;
Thiaville, A ;
Miltat, J ;
Tsiantos, V ;
Fidler, J .
JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS, 2004, 272 :747-749
[10]  
Dzyaloshinskii I E, 1957, ZhETF, V32, P1547