Sub-Optimal Second-Order Sliding Mode Controller Parameters' Selection for a Positioning System with a Synchronous Reluctance Motor

被引:1
作者
Svecko, Rajko [1 ]
Gleich, Dusan [1 ]
Chowdhury, Amor [2 ]
Sarjas, Andrej [1 ]
机构
[1] Univ Maribor, Fac Elect Engn & Comp Sci, Koroska Cesta 45, SLO-2000 Maribor, Slovenia
[2] Margento R&D, Gosposvetska Cesta 84, Maribor 2000, Slovenia
关键词
sliding mode controller; describing function; harmonic balance; positioning system; synchronous reluctance motor; DIRECT TORQUE; MACHINE; DESIGN; SYNRM;
D O I
10.3390/en12101855
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
This paper discusses nonlinear controller structure design for a synchronous reluctance motor (SynRM). The SynRM is represented with a nonlinear dynamic model. All presented nonlinearities of the SynRM are respected in the controller design procedure. A nonlinear controller policy is used for a SynRM positing system. The nonlinear controller design is based on the chattering alleviation technique for the super-twisted algorithm (STA). The alleviation technique assumes the presence of a fast parasitic dynamic, or fast, actuator. Based on the motor structure, the STA controller is designed only for the mechanical subsystem, where the electrical part presents the parasitic dynamic, and is taken in to account in the chattering suppression procedure. Chattering rejection is based on the STA describing function and harmonic balance equation. The approach allows determination of fast oscillation parameters, such as amplitude and frequency of oscillation. The conditions for the controller parameters' selection are derived with regard to the given oscillation parameters. The derived conditions cover the stability analysis for the STA controller, as well as the stability condition for current controllers and chattering amplitude minimization. The result is confirmed with an example.
引用
收藏
页数:22
相关论文
共 31 条
[1]   Modelling and performance of a hybrid synchronous reluctance machine with adjustable Xd/Xq ratio [J].
Anih, Linus U. ;
Obe, Emeka S. ;
Abonyi, Sylvester E. .
IET ELECTRIC POWER APPLICATIONS, 2015, 9 (02) :171-182
[2]   Analysis of chattering in continuous sliding-mode controllers [J].
Boiko, I ;
Fridman, L .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2005, 50 (09) :1442-1446
[3]   Implementation of Super-Twisting Control: Super-Twisting and Higher Order Sliding-Mode Observer-Based Approaches [J].
Chalanga, Asif ;
Kamal, Shyam ;
Fridman, Leonid M. ;
Bandyopadhyay, Bijnan ;
Moreno, Jaime A. .
IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, 2016, 63 (06) :3677-3685
[4]  
Dominguez J. R., 2010, 2010 11th International Workshop on Variable Structure Systems (VSS 2010), P428, DOI 10.1109/VSS.2010.5544737
[5]   Electromagnetic Analysis of a Synchronous Reluctance Motor With Single-Tooth Windings [J].
Donaghy-Spargo, C. M. ;
Mecrow, B. C. ;
Widmer, J. D. .
IEEE TRANSACTIONS ON MAGNETICS, 2017, 53 (11)
[6]   Lyapunov-Designed Super-Twisting Sliding Mode Control for Wind Energy Conversion Optimization [J].
Evangelista, C. ;
Puleston, P. ;
Valenciaga, F. ;
Fridman, L. M. .
IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, 2013, 60 (02) :538-545
[7]   Robust Direct Torque Control of Synchronous Reluctance Motor Drives in the Field-Weakening Region [J].
Foo, Gilbert Hock Beng ;
Zhang, Xinan .
IEEE TRANSACTIONS ON POWER ELECTRONICS, 2017, 32 (02) :1289-1298
[8]   A novel saturated super-twisting algorithm [J].
Golkani, Mohammad Ali ;
Koch, Stefan ;
Reichhartinger, Markus ;
Horn, Martin .
SYSTEMS & CONTROL LETTERS, 2018, 119 :52-56
[9]  
Hanamoto T., 2009, P IEEE ICIT, P1
[10]   Robust tracking system design for a synchronous reluctance motor - SynRM based on a new modified bat optimization algorithm [J].
Igrec, Dalibor ;
Chowdhury, Amor ;
Stumberger, Bojan ;
Sarjas, Andrej .
APPLIED SOFT COMPUTING, 2018, 69 :568-584