Thermal analyses for initial operations of the soft x-ray spectrometer onboard the Hitomi satellite

被引:5
作者
Noda, Hirofumi [1 ,2 ]
Mitsuda, Kazuhisa [3 ]
Okamoto, Atsushi [4 ]
Ezoe, Yuichiro [5 ]
Ishikawa, Kumi [3 ]
Fujimoto, Ryuichi [6 ]
Yamasaki, Noriko [3 ]
Takei, Yoh [3 ]
Ohashi, Takaya [5 ]
Ishisaki, Yoshitaka [5 ]
Mitsuishi, Ikuyuki [7 ]
Yoshida, Seiji [8 ]
DiPirro, Michel [9 ]
Shirron, Peter [9 ]
机构
[1] Tohoku Univ, Frontier Res Inst Interdisciplinary Sci, Sendai, Miyagi, Japan
[2] Tohoku Univ, Astron Inst, Sendai, Miyagi, Japan
[3] Japan Aerosp Explorat Agcy, Inst Space & Astronaut Sci, Sagamihara, Kanagawa, Japan
[4] Japan Aerosp Explorat Agcy, Res & Dev Directorate, Tsukuba, Ibaraki, Japan
[5] Tokyo Metropolitan Univ, Dept Phys, Hachioji, Tokyo, Japan
[6] Kanazawa Univ, Fac Math & Phys, Kanazawa, Ishikawa, Japan
[7] Nagoya Univ, Dept Phys, Nagoya, Aichi, Japan
[8] Sumitomo Heavy Ind Ltd, Niihama, Ehime, Japan
[9] NASA, Goddard Space Flight Ctr, Greenbelt, MD USA
基金
日本学术振兴会;
关键词
Hitomi (ASTRO-H); soft x-ray spectrometer; x-ray microcalorimeter; cryogenics; thermal mathematical model; thermal simulation; FLOW SUPPRESSION SYSTEM; PLUG PHASE SEPARATOR; POROUS PLUG; ORBIT OPERATION; HELIUM DEWAR; PERFORMANCE;
D O I
10.1117/1.JATIS.4.1.011202
中图分类号
V [航空、航天];
学科分类号
08 ; 0825 ;
摘要
The soft x-ray spectrometer (SXS) onboard the Hitomi satellite achieved a high-energy resolution of similar to 4.9 eV at 6 keV with an x- ray microcalorimeter array cooled to 50 mK. The cooling system utilizes liquid helium, confined in zero gravity by means of a porous plug (PP) phase separator. For the PP to function, the helium temperature must be kept lower than the. point of 2.17 K in orbit. To determine the maximum allowable helium temperature at launch, taking into account the uncertainties in both the final ground operations and initial operation in orbit, we constructed a thermal mathematical model of the SXS dewar and PP vent and carried out time-series thermal simulations. Based on the results, the maximum allowable helium temperature at launch was set at 1.7 K. We also conducted a transient thermal calculation using the actual temperatures at launch as initial conditions to determine flow and cooling rates in orbit. From this, the equilibrium helium mass flow rate was estimated to be similar to 34 to 42 mu g/s, and the lifetime of the helium mode was predicted to be similar to 3.9 to 4.7 years. This paper describes the thermal model and presents simulation results and comparisons with temperatures measured in the orbit. (C) The Authors. Published by SPIE under a Creative Commons Attribution 3.0 Unported License. Distribution or reproduction of this work in whole or in part requires full attribution of the original publication, including its DOI.
引用
收藏
页数:7
相关论文
共 50 条
[41]   Optimization of x-ray event screening using ground and in-orbit data for the Resolve instrument onboard the XRISM satellite [J].
Mochizuki, Yuto ;
Tsujimoto, Masahiro ;
Kilbourne, Caroline A. ;
Eckart, Megan E. ;
Ishisaki, Yoshitaka ;
Kanemaru, Yoshiaki ;
Leutenegger, Maurice A. ;
Mizumoto, Misaki ;
Porter, Frederick S. ;
Sato, Kosuke ;
Sawada, Makoto ;
Yamada, Shinya .
SPACE TELESCOPES AND INSTRUMENTATION 2024: ULTRAVIOLET TO GAMMA RAY, PT 1, 2024, 13093
[42]   Thermal control design and simulation of the moonlight survival device of alpha particle X-ray spectrometer [J].
Zhang, Jia-Yu ;
Wang, Huan-Yu ;
Cui, Xing-Zhu ;
Peng, Wen-Xi .
Yuhang Xuebao/Journal of Astronautics, 2014, 35 (01) :115-118
[43]   The Marshall Grazing Incidence X-ray Spectrometer (MaGIXS) [J].
Champey, P. R. ;
Winebarger, A. R. ;
Kobayashi, K. ;
Athiray, P. S. ;
Hertz, E. ;
Savage, S. ;
Beabout, B. ;
Beabout, D. ;
Broadway, D. ;
Bruccoleri, A. R. ;
Cheimets, P. ;
Davis, J. ;
Duffy, J. ;
Golub, L. ;
Gregory, D. A. ;
Griffith, C. ;
Haight, H. ;
Heilmann, R. K. ;
Hogue, B. ;
Hohl, J. ;
Hyde, D. ;
Kegley, J. ;
Kolodzieczjak, J. ;
Ramsey, B. ;
Ranganathan, J. ;
Robertson, B. ;
Schattenburg, M. L. ;
Speegle, C. O. ;
Vigil, G. ;
Walsh, R. ;
Weddenorf, B. ;
Wright, E. .
JOURNAL OF ASTRONOMICAL INSTRUMENTATION, 2022, 11 (02)
[44]   The mercury imaging X-ray spectrometer (MIXS) on bepicolombo [J].
Fraser, G. W. ;
Carpenter, J. D. ;
Rothery, D. A. ;
Pearson, J. F. ;
Martindale, A. ;
Huovelin, J. ;
Treis, J. ;
Anand, M. ;
Anttila, M. ;
Ashcroft, M. ;
Benkoff, J. ;
Bland, P. ;
Bowyer, A. ;
Bradley, A. ;
Bridges, J. ;
Brown, C. ;
Bulloch, C. ;
Bunce, E. J. ;
Christensen, U. ;
Evans, M. ;
Fairbend, R. ;
Feasey, M. ;
Giannini, F. ;
Hermann, S. ;
Hesse, M. ;
Hilchenbach, M. ;
Jorden, T. ;
Joy, K. H. ;
Kaipiainen, M. ;
Kitchingman, I. ;
Lechner, P. ;
Lutz, G. ;
Malkki, A. ;
Muinonen, K. ;
Naranen, J. ;
Portin, P. ;
Prydderch, M. ;
San Juan, J. ;
Sclater, E. ;
Schyns, E. ;
Stevenson, T. J. ;
Strueder, L. ;
Syrjasuo, M. ;
Talboys, D. ;
Thomas, P. ;
Whitford, C. ;
Whitehead, S. .
PLANETARY AND SPACE SCIENCE, 2010, 58 (1-2) :79-95
[45]   Status of the Micro-X Sounding Rocket X-ray Spectrometer [J].
Goldfinger, D. C. ;
Adams, J. S. ;
Baker, R. ;
Bandler, S. R. ;
Danowski, M. E. ;
Doriese, W. B. ;
Eckart, M. E. ;
Figueroa-Feliciano, E. ;
Hilton, G. C. ;
Hubbard, A. J. F. ;
Kelley, R. L. ;
Kilbourne, C. A. ;
McCammon, D. ;
Okajima, T. ;
Porter, F. S. ;
Reintsema, C. D. ;
Serlemitsos, P. ;
Smith, S. J. ;
Heine, S. N. T. ;
Wikus, P. .
SPACE TELESCOPES AND INSTRUMENTATION 2016: ULTRAVIOLET TO GAMMA RAY, 2016, 9905
[46]   The hard X-ray imager (HXI) onboard ASTRO-H [J].
Nakazawa, Kazuhiro ;
Sato, Goro ;
Kokubun, Motohide ;
Enoto, Teruaki ;
Fukazawa, Yasushi ;
Hagino, Kouichi ;
Harayama, Atsushi ;
Hayashi, Katsuhiro ;
Kataoka, Jun ;
Katsuta, Junichiro ;
Laurent, Philippe ;
Lebrung, Francois ;
Limousin, Olivier ;
Makishima, Kazuo ;
Mizuno, Tsunefumi ;
Mori, Kunishiro ;
Nakamori, Takeshi ;
Nakano, Toshio ;
Noda, Hirofumi ;
Odaka, Hirokazu ;
Ohno, Masanori ;
Ohta, Masayuki ;
Saito, Shinya ;
Sato, Rie ;
Tajima, Hiroyasu ;
Takahashi, Hiromitsu ;
Takahashi, Tadayuki ;
Takeda, Shin'ichiro ;
Terada, Yukikatsu ;
Uchiyama, Hideki ;
Uchiyama, Yasunobu ;
Watanabe, Shin ;
Yamaoka, Kazutaka ;
Yatsu, Yoichi ;
Yuasa, Takayuki .
SPACE TELESCOPES AND INSTRUMENTATION 2016: ULTRAVIOLET TO GAMMA RAY, 2016, 9905
[47]   Technology development for soft X-ray spectroscopy [J].
Torma, P. T. ;
Sipila, H. J. ;
Koskinen, T. ;
Mattila, M. .
SPECTROCHIMICA ACTA PART B-ATOMIC SPECTROSCOPY, 2016, 119 :36-40
[48]   X-ray Tube Thermal Management [J].
Nadella, Naresh ;
Khounsary, Ali M. .
ADVANCES IN LABORATORY-BASED X-RAY SOURCES, OPTICS, AND APPLICATIONS IV, 2015, 9590
[49]   Spatially-resolved flat-field soft X-ray spectrometer on experimental advanced superconducting tokamak [J].
Shen, Yongcai ;
Lu, Bo ;
Du, Xuewei ;
Li, Yingying ;
Fu, Jia ;
Wang, Fudi ;
Zhang, Hongming ;
Xiong, Yanwei ;
Wang, Qiuping ;
Shi, Yuejiang ;
Wan, Baonian .
FUSION ENGINEERING AND DESIGN, 2013, 88 (11) :3072-3077
[50]   Characterizing Automotive Fuel Cell Materials by Soft X-Ray Scanning Transmission X-Ray Microscopy [J].
Hitchcock, A. P. ;
Lee, V. ;
Wu, J. ;
West, M. M. ;
Cooper, G. ;
Berejnov, V. ;
Soboleva, T. ;
Susac, D. ;
Stumper, J. .
XRM 2014: PROCEEDINGS OF THE 12TH INTERNATIONAL CONFERENCE ON X-RAY MICROSCOPY, 2016, 1696