High-Energy Rechargeable Metallic Lithium Battery at-70°C Enabled by a Cosolvent Electrolyte

被引:280
作者
Dong, Xiaoli [1 ,2 ]
Lin, Yuxiao [3 ]
Li, Panlong [1 ,2 ]
Ma, Yuanyuan [1 ,2 ]
Huang, Jianhang [1 ,2 ]
Bin, Duan [1 ,2 ]
Wang, Yonggang [1 ,2 ]
Qi, Yue [3 ]
Xia, Yongyao [1 ,2 ,4 ]
机构
[1] Fudan Univ, iChEM Collaborat Innovat Ctr Chem Energy Mat, Inst New Energy, Dept Chem, Shanghai 200433, Peoples R China
[2] Fudan Univ, iChEM Collaborat Innovat Ctr Chem Energy Mat, Inst New Energy, Shanghai Key Lab Mol Catalysis & Innovat Mat, Shanghai 200433, Peoples R China
[3] Michigan State Univ, Dept Chem Engn & Mat Sci, E Lansing, MI 48824 USA
[4] Zhejiang Normal Univ, Dept Chem, Minist Educ Adv Catalysis, Key Lab,Mat, Jinhua 321004, Peoples R China
基金
中国国家自然科学基金; 中国博士后科学基金;
关键词
co-solvent electrolyte; high energy density; lithium-metal batteries; low temperature;
D O I
10.1002/anie.201900266
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Lithium metal is an ideal anode for high-energy rechargeable batteries at low temperature, yet hindered by the electrochemical instability with the electrolyte. Concentrated electrolytes can improve the oxidative/reductive stability, but encounter high viscosity. Herein, a co-solvent formulation was designed to resolve the dilemma. By adding electrochemically "inert" dichloromethane (DCM) as a diluent in concentrated ethyl acetate (EA)-based electrolyte, the co-solvent electrolyte demonstrated a high ionic conductivity (0.6 mScm(-1)), low viscosity (0.35 Pas), and wide range of potential window (0-4.85 V) at -70 degrees C. Spectral characterizations and simulations show these unique properties are associated with the co-solvation structure, in which high-concentration clusters of salt in the EA solvent were surrounded by mobile DCM diluent. Overall, this novel electrolyte enabled rechargeable metallic Li battery with high energy (178 Whkg(-1)) and power (2877 W kg(-1)) at -70 degrees C.
引用
收藏
页码:5623 / 5627
页数:5
相关论文
共 18 条
[1]  
Neelakantan P., 1963, Proceedings of the Indian Academy of Sciences-Section A, P330
[2]   High rate and stable cycling of lithium metal anode [J].
Qian, Jiangfeng ;
Henderson, Wesley A. ;
Xu, Wu ;
Bhattacharya, Priyanka ;
Engelhard, Mark ;
Borodin, Oleg ;
Zhang, Ji-Guang .
NATURE COMMUNICATIONS, 2015, 6
[3]   Liquefied gas electrolytes for electrochemical energy storage devices [J].
Rustomji, Cyrus S. ;
Yang, Yangyuchen ;
Kim, Tae Kyoung ;
Mac, Jimmy ;
Kim, Young Jin ;
Caldwell, Elizabeth ;
Chung, Hyeseung ;
Meng, Shirley .
SCIENCE, 2017, 356 (6345)
[4]   Li+ Solvation in Pure, Binary, and Ternary Mixtures of Organic Carbonate Electrolytes [J].
Skarmoutsos, Ioannis ;
Ponnuchamy, Veerapandian ;
Vetere, Valentina ;
Mossa, Stefano .
JOURNAL OF PHYSICAL CHEMISTRY C, 2015, 119 (09) :4502-4515
[5]   Lithium-Ion Electrolytes Containing Ester Cosolvents for Improved Low Temperature Performance [J].
Smart, M. C. ;
Ratnakumar, B. V. ;
Chin, K. B. ;
Whitcanack, L. D. .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2010, 157 (12) :A1361-A1374
[6]   The Effect of Additives upon the Performance of MCMB/LiNixCo1-xO2 Li-Ion Cells Containing Methyl Butyrate-Based Wide Operating Temperature Range Electrolytes [J].
Smart, Marshall C. ;
Lucht, Brett L. ;
Dalavi, Swapnil ;
Krause, Frederick C. ;
Ratnakumar, Bugga V. .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2012, 159 (06) :A739-A751
[7]   "Water-in-salt" electrolyte enables high-voltage aqueous lithium-ion chemistries [J].
Suo, Liumin ;
Borodin, Oleg ;
Gao, Tao ;
Olguin, Marco ;
Ho, Janet ;
Fan, Xiulin ;
Luo, Chao ;
Wang, Chunsheng ;
Xu, Kang .
SCIENCE, 2015, 350 (6263) :938-943
[8]  
Yamada Y, 2016, NAT ENERGY, V1, DOI [10.1038/nenergy.2016.129, 10.1038/NENERGY.2016.129]
[9]  
2018, JOULE, V2, P902, DOI DOI 10.1016/J.JOULE.2018.01.017
[10]  
2018, ADV ENERGY MATER, V8