SNA's in the Quasi-Periodic Quadratic Family

被引:25
作者
Bjerklov, Kristian [1 ]
机构
[1] Royal Inst Technol, Dept Math, S-10044 Stockholm, Sweden
关键词
STRANGE NONCHAOTIC ATTRACTORS; POSITIVE LYAPUNOV EXPONENT; MINIMALITY; EQUATIONS; DYNAMICS; MAP;
D O I
10.1007/s00220-008-0626-y
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We rigorously show that there can exist Strange Nonchaotic Attractors (SNA) in the quasi-periodically forced quadratic ( or logistic) map (theta, x) -> (theta + omega, c(theta)x(1 - x)) for certain choices of c : T bar right arrow [3/2, 4] and Diophantine omega.
引用
收藏
页码:137 / 161
页数:25
相关论文
共 19 条
[1]   A computer-assisted study of global dynamic transitions for a noninvertible system [J].
Adomaitis, Raymond A. ;
Kevrekidis, Ioannis G. ;
De La Llave, Rafael .
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2007, 17 (04) :1305-1321
[2]   Statistical properties of unimodal maps: the quadratic family [J].
Avila, A ;
Moreira, CG .
ANNALS OF MATHEMATICS, 2005, 161 (02) :831-881
[3]   THE DYNAMICS OF THE HENON MAP [J].
BENEDICKS, M ;
CARLESON, L .
ANNALS OF MATHEMATICS, 1991, 133 (01) :73-169
[4]  
Bezhaeva Z., 1996, Funkt. Anal. i Prilozhen, V30, P1
[5]   Positive lyapunov exponent and minimality for the continuous 1-d quasi-periodic Schrodinger equation with two basic frequencies [J].
Bjerkloev, Kristian .
ANNALES HENRI POINCARE, 2007, 8 (04) :687-730
[6]   Positive Lyapunov exponent and minimality for a class of one-dimensional quasi-periodic Schrodinger equations [J].
Bjerklöv, K .
ERGODIC THEORY AND DYNAMICAL SYSTEMS, 2005, 25 :1015-1045
[7]   Dynamics of the quasi-periodic Schrodinger cocycle at the lowest energy in the spectrum [J].
Bjerklov, Kristian .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2007, 272 (02) :397-442
[8]   STRANGE ATTRACTORS THAT ARE NOT CHAOTIC [J].
GREBOGI, C ;
OTT, E ;
PELIKAN, S ;
YORKE, JA .
PHYSICA D, 1984, 13 (1-2) :261-268
[10]  
JAGER TH, MEMOIRS AMS IN PRESS