A 4-Kb 1-to-8-bit Configurable 6T SRAM-Based Computation-in-Memory Unit-Macro for CNN-Based AI Edge Processors

被引:68
作者
Chiu, Yen-Cheng [1 ]
Zhang, Zhixiao [2 ,3 ]
Chen, Jia-Jing [1 ]
Si, Xin [2 ,4 ]
Liu, Ruhui [1 ]
Tu, Yung-Ning [1 ]
Su, Jian-Wei [5 ]
Huang, Wei-Hsing [1 ]
Wang, Jing-Hong [1 ]
Wei, Wei-Chen [1 ]
Hung, Je-Min [1 ]
Sheu, Shyh-Shyuan [5 ]
Li, Sih-Han [5 ]
Wu, Chih-I [5 ]
Liu, Ren-Shuo [1 ]
Hsieh, Chih-Cheng [1 ]
Tang, Kea-Tiong [1 ]
Chang, Meng-Fan [1 ]
机构
[1] Natl Tsing Hua Univ, Inst Elect Engn, Hsinchu 30013, Taiwan
[2] Natl Tsing Hua Univ, Hsinchu 30013, Taiwan
[3] Fuzhou Univ, Microelect & Solid State Elect Dept, Fuzhou 350108, Peoples R China
[4] Univ Elect Sci & Technol China, Integrated Circuit Design & Integrat Syst Dept, Chengdu 611731, Peoples R China
[5] Ind Technol Res Inst, Hsinchu 31040, Taiwan
关键词
AI edge processor; CNN; computing-in-memory (CIM); SRAM;
D O I
10.1109/JSSC.2020.3005754
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Previous SRAM-based computing-in-memory (SRAM-CIM) macros suffer small read margins for high-precision operations, large cell array area overhead, and limited compatibility with many input and weight configurations. This work presents a 1-to-8-bit configurable SRAM CIM unit-macro using: 1) a hybrid structure combining 6T-SRAM based in-memory binary product-sum (PS) operations with digital near-memory-computing multibit PS accumulation to increase read accuracy and reduce area overhead; 2) column-based place-value-grouped weight mapping and a serial-bit input (SBIN) mapping scheme to facilitate reconfiguration and increase array efficiency under various input and weight configurations; 3) a self-reference multilevel reader (SRMLR) to reduce read-out energy and achieve a sensing margin 2x that of the midpoint reference scheme; and 4) an input-aware bitline voltage compensation scheme to ensure successful read operations across various input-weight patterns. A 4-Kb configurable 6T-SRAM CIM unit-macro was fabricated using a 55-nm CMOS process with foundry 6T-SRAM cells. The resulting macro achieved access times of 3.5 ns per cycle (pipeline) and energy efficiency of 0.6-40.2 TOPS/W under binary to 8-b input/8-b weight precision.
引用
收藏
页码:2790 / 2801
页数:12
相关论文
共 30 条
[21]  
Mochida R, 2018, 2018 IEEE SYMPOSIUM ON VLSI TECHNOLOGY, P175, DOI 10.1109/VLSIT.2018.8510676
[22]  
Si X, 2019, ISSCC DIG TECH PAP I, V62, P396, DOI 10.1109/ISSCC.2019.8662392
[23]  
Song T, 2014, ISSCC DIG TECH PAP I, V57, P232, DOI 10.1109/ISSCC.2014.6757413
[24]  
Tang KT, 2019, SYMP VLSI CIRCUITS, pT166, DOI [10.23919/VLSIT.2019.8776560, 10.23919/vlsit.2019.8776560]
[25]  
Ueyoshi K, 2018, ISSCC DIG TECH PAP I, P216, DOI 10.1109/ISSCC.2018.8310261
[26]  
Valavi H, 2018, SYMP VLSI CIRCUITS, P141, DOI 10.1109/VLSIC.2018.8502421
[27]   Yield and speed optimization of a latch-type voltage sense amplifier [J].
Wicht, B ;
Nirschl, T ;
Schmitt-Landsiedel, D .
IEEE JOURNAL OF SOLID-STATE CIRCUITS, 2004, 39 (07) :1148-1158
[28]  
Xue CX, 2019, ISSCC DIG TECH PAP I, V62, P388, DOI 10.1109/ISSCC.2019.8662395
[29]  
Yang J, 2019, ISSCC DIG TECH PAP I, V62, P394, DOI 10.1109/ISSCC.2019.8662435
[30]   In-Memory Computation of a Machine-Learning Classifier in a Standard 6T SRAM Array [J].
Zhang, Jintao ;
Wang, Zhuo ;
Verma, Naveen .
IEEE JOURNAL OF SOLID-STATE CIRCUITS, 2017, 52 (04) :915-924