A 4-Kb 1-to-8-bit Configurable 6T SRAM-Based Computation-in-Memory Unit-Macro for CNN-Based AI Edge Processors

被引:68
作者
Chiu, Yen-Cheng [1 ]
Zhang, Zhixiao [2 ,3 ]
Chen, Jia-Jing [1 ]
Si, Xin [2 ,4 ]
Liu, Ruhui [1 ]
Tu, Yung-Ning [1 ]
Su, Jian-Wei [5 ]
Huang, Wei-Hsing [1 ]
Wang, Jing-Hong [1 ]
Wei, Wei-Chen [1 ]
Hung, Je-Min [1 ]
Sheu, Shyh-Shyuan [5 ]
Li, Sih-Han [5 ]
Wu, Chih-I [5 ]
Liu, Ren-Shuo [1 ]
Hsieh, Chih-Cheng [1 ]
Tang, Kea-Tiong [1 ]
Chang, Meng-Fan [1 ]
机构
[1] Natl Tsing Hua Univ, Inst Elect Engn, Hsinchu 30013, Taiwan
[2] Natl Tsing Hua Univ, Hsinchu 30013, Taiwan
[3] Fuzhou Univ, Microelect & Solid State Elect Dept, Fuzhou 350108, Peoples R China
[4] Univ Elect Sci & Technol China, Integrated Circuit Design & Integrat Syst Dept, Chengdu 611731, Peoples R China
[5] Ind Technol Res Inst, Hsinchu 31040, Taiwan
关键词
AI edge processor; CNN; computing-in-memory (CIM); SRAM;
D O I
10.1109/JSSC.2020.3005754
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Previous SRAM-based computing-in-memory (SRAM-CIM) macros suffer small read margins for high-precision operations, large cell array area overhead, and limited compatibility with many input and weight configurations. This work presents a 1-to-8-bit configurable SRAM CIM unit-macro using: 1) a hybrid structure combining 6T-SRAM based in-memory binary product-sum (PS) operations with digital near-memory-computing multibit PS accumulation to increase read accuracy and reduce area overhead; 2) column-based place-value-grouped weight mapping and a serial-bit input (SBIN) mapping scheme to facilitate reconfiguration and increase array efficiency under various input and weight configurations; 3) a self-reference multilevel reader (SRMLR) to reduce read-out energy and achieve a sensing margin 2x that of the midpoint reference scheme; and 4) an input-aware bitline voltage compensation scheme to ensure successful read operations across various input-weight patterns. A 4-Kb configurable 6T-SRAM CIM unit-macro was fabricated using a 55-nm CMOS process with foundry 6T-SRAM cells. The resulting macro achieved access times of 3.5 ns per cycle (pipeline) and energy efficiency of 0.6-40.2 TOPS/W under binary to 8-b input/8-b weight precision.
引用
收藏
页码:2790 / 2801
页数:12
相关论文
共 30 条
[11]  
Chen Wei-Hao, 2017, IEEE INT ELECT DEVIC
[12]  
Dong Q, 2017, SYMP VLSI CIRCUITS, pC160, DOI 10.23919/VLSIC.2017.8008465
[13]  
Gonugondla SK, 2018, ISSCC DIG TECH PAP I, P490, DOI 10.1109/ISSCC.2018.8310398
[14]  
Hirabayashi O., 2009, 2009 IEEE International Solid-State Circuits Conference (ISSCC 2009), P458, DOI 10.1109/ISSCC.2009.4977506
[15]   A 28 nm Configurable Memory (TCAM/BCAM/SRAM) Using Push-Rule 6T Bit Cell Enabling Logic-in-Memory [J].
Jeloka, Supreet ;
Akesh, Naveen Bharathwaj ;
Sylvester, Dennis ;
Blaauw, David .
IEEE JOURNAL OF SOLID-STATE CIRCUITS, 2016, 51 (04) :1009-1021
[16]  
Jiang ZW, 2018, 2018 IEEE SYMPOSIUM ON VLSI TECHNOLOGY, P173, DOI 10.1109/VLSIT.2018.8510687
[17]  
Karl E., 2012, 2012 IEEE International Solid-State Circuits Conference (ISSCC), P230, DOI 10.1109/ISSCC.2012.6176988
[18]  
Khwa WS, 2018, ISSCC DIG TECH PAP I, P496, DOI 10.1109/ISSCC.2018.8310401
[19]  
Li SC, 2016, DES AUT CON, DOI [10.1109/ICAUMS.2016.8479697, 10.1145/2897937.2898064]
[20]   A Neuromorphic Chip Optimized for Deep Learning and CMOS Technology With Time-Domain Analog and Digital Mixed-Signal Processing [J].
Miyashita, Daisuke ;
Kousai, Shouhei ;
Suzuki, Tomoya ;
Deguchi, Jun .
IEEE JOURNAL OF SOLID-STATE CIRCUITS, 2017, 52 (10) :2679-2689