Amide Linkages in Pyrene-Based Covalent Organic Frameworks toward Efficient Photocatalytic Reduction of Uranyl

被引:15
|
作者
Kang, Jinyang [1 ]
Hang, Jiahui [1 ]
Chen, Bo [1 ]
Chen, Lang [1 ]
Zhao, Pengwei [1 ]
Xu, Yuwei [1 ]
Luo, Yu [1 ]
Xia, Chuanqin [1 ]
机构
[1] Sichuan Univ, Coll Chem, Chengdu 610064, Peoples R China
基金
中国国家自然科学基金;
关键词
amide linkages; covalent organic frameworks; postsynthetic modification; uranyl; photocatalytic reduction; INTRAMOLECULAR CHARGE-TRANSFER; AQUEOUS-SOLUTION; URANIUM REDUCTION; REMOVAL; GRAPHENE; RECOVERY; IONS;
D O I
10.1021/acsami.2c16702
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
The bond linkages in covalent organic frameworks (COFs) partly determine its physical and chemical properties, thus affecting the photoreactive activity by influencing the generation of photoelectrons and the separation of excitons. Herein, pyrenebased amide COF 4,4', 4., 4.-( pyrene- 1,3,6,8- tetrayl)tetrabenzaldehyde- 3,8- diamino-6- phenylphenanthridine (TFPPy-DP) was synthesized by postsynthetic modification of imine COFs. Due to the introduction of oxygen atoms into the framework and the change in polarity, an increased number of photogenerated electrons and a wide band gap for amide COFs were found, hydrophilicity and dispersibility were prompted as well. Both imine and amide COF TFPPy-DP were applied in the photocatalytic reduction and removal of toxic U(VI) under visible light, the catalytic reduction equilibrium (91% removal percentage of 238 ppm U at pH 3) was achieved by imine COFs with 10 h of irradiation, while amide COFs only took 2 h of irradiation (82% removal percentage). The much faster photocatalytic reduction rate of U(VI) can be attributed to the fact that amide COF TFPPy-DP retained crystallinity and permanent porosity and exhibited lower electrochemical impedance and enhanced charge separation and accumulation. Further electronic excitation analysis based on time-dependent density functional theory calculations revealed that the intramolecular charge-transfer effect in amide TFPPy-DP enhanced its photocatalytic rate.
引用
收藏
页码:57225 / 57234
页数:10
相关论文
共 50 条
  • [1] Synthesis of Pyrene-Based Covalent Organic Frameworks for Photocatalytic Tetracycline Degradation
    Hu, Zhiyi
    Luo, Yong
    Wang, Lizhi
    Wang, Yuanlan
    Wang, Qiong
    Jiang, Guofang
    Zhang, Qianfan
    Cui, Fuzhi
    ACS APPLIED POLYMER MATERIALS, 2023, 5 (11): : 9263 - 9273
  • [2] Pyrene-Based Covalent Organic Frameworks for Photocatalytic Hydrogen Peroxide Production
    Sun, Jiamin
    Jena, Himanshu Sekhar
    Krishnaraj, Chidharth
    Rawat, Kuber Singh
    Abednatanzi, Sara
    Chakraborty, Jeet
    Laemont, Andreas
    Liu, Wanlu
    Chen, Hui
    Liu, Ying-Ya
    Leus, Karen
    Vrielinck, Henk
    Van Speybroeck, Veronique
    Van Der Voort, Pascal
    ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2023, 62 (19)
  • [3] Dual-Acceptor Engineering in Pyrene-Based Covalent Organic Frameworks for Boosting Photocatalytic Hydrogen Evolution
    Liu, Nengyi
    Xie, Shuailei
    Huang, Yuxing
    Lu, Jiaping
    Shi, Hongjie
    Xu, Shumeng
    Zhang, Guigang
    Chen, Xiong
    ADVANCED ENERGY MATERIALS, 2024, 14 (40)
  • [4] Rational Conversion of Imine Linkages to Amide Linkages in Covalent Organic Frameworks for Photocatalytic Oxidation with Enhanced Photostability
    Xue, Rui
    Liu, Yin-Sheng
    Wang, Ming-Yue
    Guo, Hao
    Yang, Wu
    Guo, Ji-Xi
    Yang, Guo-Yu
    CHEMSUSCHEM, 2024, 17 (19)
  • [5] Enhancing the Iodine Adsorption Capacity of Pyrene-Based Covalent Organic Frameworks by Regulating the Pore Environment
    Gao, Chao
    Guan, Xuhui
    Zhang, Menghui
    Hu, Haoran
    Chen, Lei
    Sun, Chengguo
    Zhang, Chong
    Du, Yang
    Hu, Bingcheng
    MACROMOLECULAR RAPID COMMUNICATIONS, 2023, 44 (19)
  • [6] Multi-plateau water adsorption of pyrene-based covalent organic frameworks for potential humidity control
    Liu, Tianyi
    Cheng, Pengfei
    Liu, Jiaojiao
    Yang, Li
    Li, Zhen
    Li, Yimeng
    Deng, Weiqiao
    CHEMICAL ENGINEERING JOURNAL, 2024, 502
  • [7] Pyrene-Based Polyimide Covalent Organic Framework with Temperature-Dependent Fluorescence
    Zadehnazari, Amin
    Khosropour, Ahmadreza
    Altaf, Ataf Ali
    Amirjalayer, Saeed
    Abbaspourrad, Alireza
    ADVANCED OPTICAL MATERIALS, 2023, 11 (14)
  • [8] Benzobisoxazole-based covalent organic frameworks for efficient photocatalytic oxidation
    Wang, Wen
    Bai, Yuhongxu
    Li, Zhongliang
    Su, Qing
    Li, Boai
    Lei, Meng
    Feng, Jing
    Xu, Ao
    Wu, Qiaolin
    CHEMICAL ENGINEERING JOURNAL, 2024, 501
  • [9] Effect of linkages on photocatalytic H2 evolution over covalent organic frameworks
    Lu, Ruowei
    Liu, Cheng
    Chen, Yanxia
    Tan, Lichuan
    Yuan, Guangsong
    Wang, Peng
    Wang, Cuijuan
    Yan, Hongjian
    JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY A-CHEMISTRY, 2021, 421
  • [10] Amide-based covalent organic frameworks materials for efficient and recyclable removal of heavy metal lead (II)
    Li, Guiliang
    Ye, Jianrong
    Fang, Qile
    Liu, Fu
    CHEMICAL ENGINEERING JOURNAL, 2019, 370 : 822 - 830