Physical Security Assessment with Convolutional Neural Network Transfer Learning

被引:0
|
作者
Stubbs, Jaclynn J. [1 ]
Birch, Gabriel C. [1 ]
Woo, Bryana L. [1 ]
Kouhestani, Camron G. [1 ]
机构
[1] Sandia Natl Labs, 1515 Eubank SE, Albuquerque, NM 87123 USA
来源
2017 INTERNATIONAL CARNAHAN CONFERENCE ON SECURITY TECHNOLOGY (ICCST) | 2017年
关键词
Machine Learning; Physical Security; Convolutional Neural Network; Transfer Learning; Nuisance Alarms;
D O I
暂无
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Deep learning techniques have demonstrated the ability to perform a variety of object recognition tasks using visible imager data; however, deep learning has not been implemented as a means to autonomously detect and assess targets of interest in a physical security system. We demonstrate the use of transfer learning on a convolutional neural network (CNN) to significantly reduce training time while keeping detection accuracy of physical security relevant targets high. Unlike many detection algorithms employed by video analytics within physical security systems, this method does not rely on temporal data to construct a background scene; targets of interest can halt motion indefinitely and still be detected by the implemented CNN. A key advantage of using deep learning is the ability for a network to improve over time. Periodic retraining can lead to better detection and higher confidence rates. We investigate training data size versus CNN test accuracy using physical security video data. Due to the large number of visible imagers, significant volume of data collected daily, and currently deployed human in the loop ground truth data, physical security systems present a unique environment that is well suited for analysis via CNNs. This could lead to the creation of algorithmic element that reduces human burden and decreases human analyzed nuisance alarms.
引用
收藏
页数:6
相关论文
共 50 条
  • [41] Centrifugal Pump Fault Detection with Convolutional Neural Network Transfer Learning
    Sunal, Cem Ekin
    Velisavljevic, Vladan
    Dyo, Vladimir
    Newton, Barry
    Newton, Jake
    SENSORS, 2024, 24 (08)
  • [42] Application of Convolutional Neural Network Based on Transfer Learning for Garbage Classification
    Cao, Li
    Xiang, Wei
    PROCEEDINGS OF 2020 IEEE 5TH INFORMATION TECHNOLOGY AND MECHATRONICS ENGINEERING CONFERENCE (ITOEC 2020), 2020, : 1032 - 1036
  • [43] Video Seals Recognition using Transfer Learning of Convolutional Neural Network
    Karine, Ayoub
    Napoleon, Thibault
    Mulot, Jean-Yves
    Auffret, Yves
    2020 TENTH INTERNATIONAL CONFERENCE ON IMAGE PROCESSING THEORY, TOOLS AND APPLICATIONS (IPTA), 2020,
  • [44] Rice Pest Identification Based on Convolutional Neural Network and Transfer Learning
    Yang Hongyun
    Xiao Xiaomei
    Huang Qiong
    Zheng Guoliang
    Yi Wenlong
    LASER & OPTOELECTRONICS PROGRESS, 2022, 59 (16)
  • [45] Deep Convolutional Neural Network with Transfer Learning for Environmental Sound Classification
    Lu, Jianrui
    Ma, Ruofei
    Liu, Gongliang
    Qin, Zhiliang
    2021 INTERNATIONAL CONFERENCE ON COMPUTER, CONTROL AND ROBOTICS (ICCCR 2021), 2021, : 242 - 245
  • [46] Weather Image Recognition Based on Convolutional Neural Network and Transfer Learning
    Gao, Zunhai
    Qiu, Yuzhan
    PROCEEDINGS OF 2024 3RD INTERNATIONAL CONFERENCE ON CRYPTOGRAPHY, NETWORK SECURITY AND COMMUNICATION TECHNOLOGY, CNSCT 2024, 2024, : 631 - 638
  • [47] Deep Convolutional Neural Network Using Transfer Learning for Fault Diagnosis
    Zhang, Dong
    Zhou, Taotao
    IEEE ACCESS, 2021, 9 : 43889 - 43897
  • [48] Waste image classification based on transfer learning and convolutional neural network
    Zhang, Qiang
    Yang, Qifan
    Zhang, Xujuan
    Bao, Qiang
    Su, Jinqi
    Liu, Xueyan
    WASTE MANAGEMENT, 2021, 135 (135) : 150 - 157
  • [49] Transfer learning-based approach using new convolutional neural network classifier for steel surface defects classification
    Ibrahim, Alaa Aldein M. S.
    Tapamo, Jules R.
    SCIENTIFIC AFRICAN, 2024, 23
  • [50] Convolutional Neural Network for Visual Security Evaluation
    Yang, Ying
    Xiang, Tao
    Liu, Hangcheng
    Liao, Xiaofeng
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2021, 31 (08) : 3293 - 3307