Physical Security Assessment with Convolutional Neural Network Transfer Learning

被引:0
|
作者
Stubbs, Jaclynn J. [1 ]
Birch, Gabriel C. [1 ]
Woo, Bryana L. [1 ]
Kouhestani, Camron G. [1 ]
机构
[1] Sandia Natl Labs, 1515 Eubank SE, Albuquerque, NM 87123 USA
来源
2017 INTERNATIONAL CARNAHAN CONFERENCE ON SECURITY TECHNOLOGY (ICCST) | 2017年
关键词
Machine Learning; Physical Security; Convolutional Neural Network; Transfer Learning; Nuisance Alarms;
D O I
暂无
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Deep learning techniques have demonstrated the ability to perform a variety of object recognition tasks using visible imager data; however, deep learning has not been implemented as a means to autonomously detect and assess targets of interest in a physical security system. We demonstrate the use of transfer learning on a convolutional neural network (CNN) to significantly reduce training time while keeping detection accuracy of physical security relevant targets high. Unlike many detection algorithms employed by video analytics within physical security systems, this method does not rely on temporal data to construct a background scene; targets of interest can halt motion indefinitely and still be detected by the implemented CNN. A key advantage of using deep learning is the ability for a network to improve over time. Periodic retraining can lead to better detection and higher confidence rates. We investigate training data size versus CNN test accuracy using physical security video data. Due to the large number of visible imagers, significant volume of data collected daily, and currently deployed human in the loop ground truth data, physical security systems present a unique environment that is well suited for analysis via CNNs. This could lead to the creation of algorithmic element that reduces human burden and decreases human analyzed nuisance alarms.
引用
收藏
页数:6
相关论文
共 50 条
  • [31] Classification of Domestic Refuse in Medical Institutions Based on Transfer Learning and Convolutional Neural Network
    Guo, Dequan
    Yang, Qiao
    Zhang, Yu-Dong
    Jiang, Tao
    Yan, Hanbing
    CMES-COMPUTER MODELING IN ENGINEERING & SCIENCES, 2021, 127 (02): : 599 - 620
  • [32] Automatic Polyp Detection in Colonoscopy Images: Convolutional Neural Network, Dataset and Transfer Learning
    Sun, Mingjian
    Zhang, Xiao
    Qu, Ge
    Zou, Mengshu
    Du, Hai
    Ma, Liyong
    Qu, Yawei
    JOURNAL OF MEDICAL IMAGING AND HEALTH INFORMATICS, 2019, 9 (01) : 126 - 133
  • [33] Face Recognition Based on Full Convolutional Neural Network Based on Transfer Learning Model
    Fan, Zhongkui
    Guan, Ye-peng
    COMPUTER SCIENCE AND INFORMATION SYSTEMS, 2021, 18 (04) : 1395 - 1409
  • [34] Amalgamation of Transfer Learning and Deep Convolutional Neural Network for Multiple Fault Detection in SCIM
    Kumar, Prashant
    Hati, Ananda Shankar
    Padmanaban, Sanjeevikumar
    Leonowicz, Zbigniew
    Chakrabarti, Prasun
    2020 20TH IEEE INTERNATIONAL CONFERENCE ON ENVIRONMENT AND ELECTRICAL ENGINEERING AND 2020 4TH IEEE INDUSTRIAL AND COMMERCIAL POWER SYSTEMS EUROPE (EEEIC/I&CPS EUROPE), 2020,
  • [35] Hyperspectral Image Classification Based on Superpixel Pooling Convolutional Neural Network with Transfer Learning
    Xie, Fuding
    Gao, Quanshan
    Jin, Cui
    Zhao, Fengxia
    REMOTE SENSING, 2021, 13 (05) : 1 - 17
  • [36] Traffic Sign Recognition via Transfer Learning using Convolutional Neural Network Models
    Yildiz, Gulcan
    Dizdaroglu, Bekir
    2020 28TH SIGNAL PROCESSING AND COMMUNICATIONS APPLICATIONS CONFERENCE (SIU), 2020,
  • [37] Transfer learning convolutional neural network with modified Lion optimization for multimodal biometric system
    Gona, Anilkumar
    Subramoniam, M.
    Swarnalatha, R.
    COMPUTERS & ELECTRICAL ENGINEERING, 2023, 108
  • [38] Image Recognition of Coal and Coal Gangue Using a Convolutional Neural Network and Transfer Learning
    Pu, Yuanyuan
    Apel, Derek B.
    Szmigiel, Alicja
    Chen, Jie
    ENERGIES, 2019, 12 (09)
  • [39] Convolutional Neural Network with Transfer Learning for Classification of Food Types in Tray Box Images
    Thiodorus, Gustavo
    Sari, Yuita Arum
    Yudistira, Novanto
    PROCEEDINGS OF 2021 INTERNATIONAL CONFERENCE ON SUSTAINABLE INFORMATION ENGINEERING AND TECHNOLOGY, SIET 2021, 2021, : 301 - 308
  • [40] Transfer Learning with Convolutional Neural Network for Gastrointestinal Diseases Detection using Endoscopic Images
    Paola Escobar, Jessica
    Gomez, Natalia
    Sanchez, Karen
    2020 IEEE COLOMBIAN CONFERENCE ON APPLICATIONS OF COMPUTATIONAL INTELLIGENCE (IEEE COLCACI 2020), 2020,