Hyperparameter estimation for uncertainty quantification in mesoscale carbon dioxide inversions

被引:21
作者
Wu, Lin [1 ,2 ]
Bocquet, Marc [2 ,3 ]
Chevallier, Frederic [1 ]
Lauvaux, Thomas [4 ]
Davis, Kenneth [4 ]
机构
[1] IPSL, CEA CNRS UVSQ, Lab Sci Climat & Environm, Gif Sur Yvette, France
[2] Univ Paris Est, CEREA, Joint Lab Ecole Ponts ParisTech EDF R&D, Marne La Vallee, France
[3] Paris Rocquencourt Res Ctr, INRIA, Paris, France
[4] Penn State Univ, Dept Meteorol, State Coll, PA USA
来源
TELLUS SERIES B-CHEMICAL AND PHYSICAL METEOROLOGY | 2013年 / 65卷
关键词
hyperparameter estimation; uncertainty quantification; mesoscale carbon dioxide inversions; MAXIMUM-LIKELIHOOD-ESTIMATION; ERROR COVARIANCE PARAMETERS; CO2; SOURCES; ATMOSPHERIC CO2; PART II; MODEL; STATISTICS; DIAGNOSIS; FORECAST; FLUXES;
D O I
10.3402/tellusb.v65i0.20894
中图分类号
P4 [大气科学(气象学)];
学科分类号
0706 ; 070601 ;
摘要
Uncertainty quantification is critical in the inversion of CO2 surface fluxes from atmospheric concentration measurements. Here, we estimate the main hyperparameters of the error covariance matrices for a priori fluxes and CO2 concentrations, that is, the variances and the correlation lengths, using real, continuous hourly CO2 concentration data in the context of the Ring 2 experiment of the North American Carbon Program Mid Continent Intensive. Several criteria, namely maximum likelihood (ML), general cross-validation (GCV) and chi(2) test are compared for the first time under a realistic setting in a mesoscale CO2 inversion. It is shown that the optimal hyperparameters under the ML criterion assure perfect chi(2) consistency of the inverted fluxes. Inversions using the ML error variances estimates rather than the prescribed default values are less weighted by the observations, because the default values underestimate the model-data mismatch error, which is assumed to be dominated by the atmospheric transport error. As for the spatial correlation length in prior flux errors, the Ring 2 network is sparse for GCV, and this method fails to reach an optimum. In contrast, the ML estimate (e. g. an optimum of 20 km for the first week of June 2007) does not support long spatial correlations that are usually assumed in the default values.
引用
收藏
页数:13
相关论文
共 43 条
[1]  
[Anonymous], 1996, Parametric Statistical Inference
[2]  
[Anonymous], 2002, COMPUTATIONAL METHOD
[3]  
BALGOVIND R, 1983, MON WEATHER REV, V111, P701, DOI 10.1175/1520-0493(1983)111<0701:ASDMFT>2.0.CO
[4]  
2
[5]  
Bocquet M., 2012, ADV DATA ASSIMILATIO
[6]   Regional changes in carbon dioxide fluxes of land and oceans since 1980 [J].
Bousquet, P ;
Peylin, P ;
Ciais, P ;
Le Quéré, C ;
Friedlingstein, P ;
Tans, PP .
SCIENCE, 2000, 290 (5495) :1342-1346
[7]   Properties and first application of an error-statistics tuning method in variational assimilation [J].
Chapnik, B ;
Desroziers, G ;
Rabier, F ;
Talagrand, O .
QUARTERLY JOURNAL OF THE ROYAL METEOROLOGICAL SOCIETY, 2004, 130 (601) :2253-2275
[8]   CO2 surface fluxes at grid point scale estimated from a global 21 year reanalysis of atmospheric measurements [J].
Chevallier, F. ;
Ciais, P. ;
Conway, T. J. ;
Aalto, T. ;
Anderson, B. E. ;
Bousquet, P. ;
Brunke, E. G. ;
Ciattaglia, L. ;
Esaki, Y. ;
Froehlich, M. ;
Gomez, A. ;
Gomez-Pelaez, A. J. ;
Haszpra, L. ;
Krummel, P. B. ;
Langenfelds, R. L. ;
Leuenberger, M. ;
Machida, T. ;
Maignan, F. ;
Matsueda, H. ;
Morgui, J. A. ;
Mukai, H. ;
Nakazawa, T. ;
Peylin, P. ;
Ramonet, M. ;
Rivier, L. ;
Sawa, Y. ;
Schmidt, M. ;
Steele, L. P. ;
Vay, S. A. ;
Vermeulen, A. T. ;
Wofsy, S. ;
Worthy, D. .
JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2010, 115
[9]   On the assignment of prior errors in Bayesian inversions of CO2 surface fluxes [J].
Chevallier, Frederic ;
Viovy, Nicolas ;
Reichstein, Markus ;
Ciais, Philippe .
GEOPHYSICAL RESEARCH LETTERS, 2006, 33 (13)
[10]   What eddy-covariance measurements tell us about prior land flux errors in CO2-flux inversion schemes [J].
Chevallier, Frederic ;
Wang, Tao ;
Ciais, Philippe ;
Maignan, Fabienne ;
Bocquet, Marc ;
Arain, M. Altaf ;
Cescatti, Alessandro ;
Chen, Jiquan ;
Dolman, A. Johannes ;
Law, Beverly E. ;
Margolis, Hank A. ;
Montagnani, Leonardo ;
Moors, Eddy J. .
GLOBAL BIOGEOCHEMICAL CYCLES, 2012, 26