High-pressure, high-temperature molecular doping of nanodiamond

被引:46
作者
Crane, M. J. [1 ]
Petrone, A. [2 ]
Beck, R. A. [2 ]
Lim, M. B. [3 ]
Zhou, X. [3 ]
Li, X. [2 ]
Stroud, R. M. [4 ]
Pauzauskie, P. J. [1 ,3 ,5 ]
机构
[1] Univ Washington, Dept Chem Engn, Seattle, WA 98195 USA
[2] Univ Washington, Dept Chem, Seattle, WA 98195 USA
[3] Univ Washington, Dept Mat Sci & Engn, Seattle, WA 98195 USA
[4] Naval Res Lab, Mat Sci & Technol Div, Washington, DC 20375 USA
[5] Pacific Northwest Natl Lab, Phys & Computat Sci Directorate, Richland, WA 99352 USA
基金
美国国家科学基金会;
关键词
ELECTRONIC-STRUCTURE; LUMINESCENCE CENTER; PRESOLAR DIAMONDS; CARBON; PHASE; TRANSFORMATION; TRANSITION; CENTERS; ORIGIN;
D O I
10.1126/sciadv.aau6073
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The development of color centers in diamond as the basis for emerging quantum technologies has been limited by the need for ion implantation to create the appropriate defects. We present a versatile method to dope diamond without ion implantation by synthesis of a doped amorphous carbon precursor and transformation at high temperatures and high pressures. To explore this bottom-up method for color center generation, we rationally create silicon vacancy defects in nanodiamond and investigate them for optical pressure metrology. In addition, we show that this process can generate noble gas defects within diamond from the typically inactive argon pressure medium, which may explain the hysteresis effects observed in other high-pressure experiments and the presence of noble gases in some meteoritic nanodiamonds. Our results illustrate a general method to produce color centers in diamond and may enable the controlled generation of designer defects.
引用
收藏
页数:7
相关论文
共 60 条
[1]   Nanoscale nuclear magnetic resonance with chemical resolution [J].
Aslam, Nabeel ;
Pfender, Matthias ;
Neumann, Philipp ;
Reuter, Rolf ;
Zappe, Andrea ;
de Oliveira, Felipe Favaro ;
Denisenko, Andrej ;
Sumiya, Hitoshi ;
Onoda, Shinobu ;
Isoya, Junichi ;
Wrachtrup, Joerg .
SCIENCE, 2017, 357 (6346) :67-71
[2]   An overview of noble gas (He, Ne, Ar, Xe) contents and isotope signals in terrestrial diamond [J].
Basu, S. ;
Jones, A. P. ;
Verchoysky, A. B. ;
Kelley, S. P. ;
Stuart, F. M. .
EARTH-SCIENCE REVIEWS, 2013, 126 :235-249
[3]   Effect of Surface Passivation on Nanodiamond Crystallinity [J].
Beck, Ryan A. ;
Petrone, Alessio ;
Kasper, Joseph M. ;
Crane, Matthew J. ;
Pauzauskie, Peter J. ;
Li, Xiaosong .
JOURNAL OF PHYSICAL CHEMISTRY C, 2018, 122 (15) :8573-8580
[4]   DENSITY-FUNCTIONAL THERMOCHEMISTRY .3. THE ROLE OF EXACT EXCHANGE [J].
BECKE, AD .
JOURNAL OF CHEMICAL PHYSICS, 1993, 98 (07) :5648-5652
[5]   MELTING, THERMAL-EXPANSION, AND PHASE-TRANSITIONS OF IRON AT HIGH-PRESSURES [J].
BOEHLER, R ;
VONBARGEN, N ;
CHOPELAS, A .
JOURNAL OF GEOPHYSICAL RESEARCH-SOLID EARTH AND PLANETS, 1990, 95 (B13) :21731-21736
[6]   The pressure-temperature phase and transformation diagram for carbon; Updated through 1994 [J].
Bundy, FP ;
Bassett, WA ;
Weathers, MS ;
Hemley, RJ ;
Mao, HK ;
Goncharov, AF .
CARBON, 1996, 34 (02) :141-153
[7]   Structure, bonding, and geochemistry of xenon at high pressures [J].
Caldwell, WA ;
Nguyen, JH ;
Pfrommer, BG ;
Mauri, F ;
Louie, SG ;
Jeanloz, R .
SCIENCE, 1997, 277 (5328) :930-933
[8]   Varying temperature and silicon content in nanodiamond growth: effects on silicon-vacancy centres [J].
Choi, Sumin ;
Leong, Victor ;
Davydov, Valery A. ;
Agafonov, Viatcheslav N. ;
Cheong, Marcus W. O. ;
Kalashnikov, Dmitry A. ;
Krivitsky, Leonid A. .
SCIENTIFIC REPORTS, 2018, 8
[9]  
Chong D.P., 1997, Recent Advances in Density Functional Methods
[10]   TRANSFORMATION OF STATE OF NITROGEN IN DIAMOND [J].
CHRENKO, RM ;
TUFT, RE ;
STRONG, HM .
NATURE, 1977, 270 (5633) :141-144