Uncertainty quantification in LES of channel flow

被引:13
作者
Safta, Cosmin [1 ]
Blaylock, Myra [1 ]
Templeton, Jeremy [1 ]
Domino, Stefan [1 ]
Sargsyan, Khachik [1 ]
Najm, Habib [1 ]
机构
[1] Sandia Natl Labs, Livermore, CA 94551 USA
关键词
large eddy simulation; Bayesian framework; calibration; model error; polynomial chaos; Rosenblatt transformation; DIRECT NUMERICAL-SIMULATION; LARGE-EDDY SIMULATIONS; POLYNOMIAL CHAOS; TURBULENCE MODELS; ERRORS; PROPAGATION;
D O I
10.1002/fld.4272
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
In this paper, we present a Bayesian framework for estimating joint densities for large eddy simulation (LES) sub-grid scale model parameters based on canonical forced isotropic turbulence direct numerical simulation (DNS) data. The framework accounts for noise in the independent variables, and we present alternative formulations for accounting for discrepancies between model and data. To generate probability densities for flow characteristics, posterior densities for sub-grid scale model parameters are propagated forward through LES of channel flow and compared with DNS data. Synthesis of the calibration and prediction results demonstrates that model parameters have an explicit filter width dependence and are highly correlated. Discrepancies between DNS and calibrated LES results point to additional model form inadequacies that need to be accounted for. Copyright (c) 2016 John Wiley & Sons, Ltd.
引用
收藏
页码:376 / 401
页数:26
相关论文
共 60 条
  • [1] Adrian R., 1995, 800 TAM U ILL
  • [2] A filtered-wall formulation for large-eddy simulation of wall-bounded turbulence
    Bhattacharya, Amitabh
    Das, Arup
    Moser, Robert D.
    [J]. PHYSICS OF FLUIDS, 2008, 20 (11)
  • [3] Approximate deconvolution boundary conditions for large eddy simulation
    Borggaard, J.
    Iliescu, T.
    [J]. APPLIED MATHEMATICS LETTERS, 2006, 19 (08) : 735 - 740
  • [4] Grid-independent large-eddy simulation using explicit filtering
    Bose, Sanjeeb T.
    Moin, Parviz
    You, Donghyun
    [J]. PHYSICS OF FLUIDS, 2010, 22 (10)
  • [5] Bayesian uncertainty analysis with applications to turbulence modeling
    Cheung, Sai Hung
    Oliver, Todd A.
    Prudencio, Ernesto E.
    Prudhomme, Serge
    Moser, Robert D.
    [J]. RELIABILITY ENGINEERING & SYSTEM SAFETY, 2011, 96 (09) : 1137 - 1149
  • [6] Uncertainty quantification for porous media flows
    Christie, Mike
    Demyanov, Vasily
    Erbas, Demet
    [J]. JOURNAL OF COMPUTATIONAL PHYSICS, 2006, 217 (01) : 143 - 158
  • [7] Numerical prediction of turbulent flows using Reynolds-averaged NavierStokes and large-eddy simulation with uncertain inflowconditions
    Congedo, Pietro Marco
    Duprat, Cedric
    Balarac, Guillaume
    Corre, Christophe
    [J]. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, 2013, 72 (03) : 341 - 358
  • [8] Numerical challenges in the use of polynomial chaos representations for stochastic processes
    Debusschere, BJ
    Najm, HN
    Pébay, PP
    Knio, OM
    Ghanem, RG
    Le Maître, OP
    [J]. SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2004, 26 (02) : 698 - 719
  • [9] BAYESIAN-ANALYSIS OF ERRORS-IN-VARIABLES REGRESSION-MODELS
    DELLAPORTAS, P
    STEPHENS, DA
    [J]. BIOMETRICS, 1995, 51 (03) : 1085 - 1095
  • [10] Goal-oriented uncertainty propagation using stochastic adjoints
    Duraisamy, Karthik
    Chandrashekar, Praveen
    [J]. COMPUTERS & FLUIDS, 2012, 66 : 10 - 20