A mathematical construction of the non-abelian Chern-Simons functional integral

被引:30
作者
Albeverio, S
Sengupta, A
机构
[1] Fak. und Inst. für Mathematik, Ruhr-Universität Bochum
[2] Department of Mathematics, Louisiana State University, Baton Rouge, LA
关键词
D O I
10.1007/s002200050120
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We construct rigorously an infinite dimensional distribution which corresponds to the Chern-Simons (CS) functional integral associated with a principal fiber bundle over R-3 with structure group a compact connected Lie group. We determine the 'moments' of the CS distribution and show that these coincide with those used in informal studies of the CS integral. A locality property of the CS distribution is proven. The complesified theory of Frohlich and King is also discussed within our framework.
引用
收藏
页码:563 / 579
页数:17
相关论文
共 14 条
[1]  
ALBEVERIO S, 1994, STOCHASTIC PROCESSES, V2
[2]  
ALBEVERIO S, 1992, P 1 MAX BORN S WROCL, P143
[3]  
ATIYAH M, 1974, ANN MATH, V99, P48
[4]   THE FEYNMAN INTEGRAND AS A HIDA DISTRIBUTION [J].
DEFARIA, M ;
POTTHOFF, J ;
STREIT, L .
JOURNAL OF MATHEMATICAL PHYSICS, 1991, 32 (08) :2123-2127
[5]  
Farkas HM, 1980, GRADUATE TEXTS MATH
[6]   THE CHERN-SIMONS THEORY AND KNOT POLYNOMIALS [J].
FROHLICH, J ;
KING, C .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1989, 126 (01) :167-199
[7]  
HIDA J, 1993, WHITE NOISE INFINITE
[8]  
KNIZHNIK VG, 1984, NUCL PHYS B, V247, P83, DOI 10.1016/0550-3213(84)90374-2
[9]   FINITE-DIMENSIONAL HIDA DISTRIBUTIONS [J].
KUBO, I ;
KUO, HH .
JOURNAL OF FUNCTIONAL ANALYSIS, 1995, 128 (01) :1-47
[10]   A CHARACTERIZATION OF HIDA DISTRIBUTIONS [J].
POTTHOFF, J ;
STREIT, L .
JOURNAL OF FUNCTIONAL ANALYSIS, 1991, 101 (01) :212-229