Self-similar non-clustered planar graphs as models for complex networks

被引:6
作者
Comellas, Francesc [1 ]
Zhang, Zhongzhi [2 ,3 ]
Chen, Lichao [2 ,3 ]
机构
[1] Univ Politecn Cataluna, EPSC, Dep Matemat Aplicada 4, Barcelona 08860, Catalonia, Spain
[2] Fudan Univ, Sch Comp Sci, Shanghai 200433, Peoples R China
[3] Fudan Univ, Shanghai Key Lab Intelligent Informat Proc, Shanghai 200433, Peoples R China
基金
中国国家自然科学基金;
关键词
ORGANIZATION; FRACTALITY;
D O I
10.1088/1751-8113/42/4/045103
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In this paper we introduce a family of planar, modular and self-similar graphs which has small-world and scale-free properties. The main parameters of this family are comparable to those of networks associated with complex systems, and therefore the graphs are of interest as mathematical models for these systems. As the clustering coefficient of the graphs is zero, this family is an explicit construction that does not match the usual characterization of hierarchical modular networks, namely that vertices have clustering values inversely proportional to their degrees.
引用
收藏
页数:10
相关论文
共 23 条
[1]   Statistical mechanics of complex networks [J].
Albert, R ;
Barabási, AL .
REVIEWS OF MODERN PHYSICS, 2002, 74 (01) :47-97
[2]   Apollonian networks: Simultaneously scale-free, small world, Euclidean, space filling, and with matching graphs [J].
Andrade, JS ;
Herrmann, HJ ;
Andrade, RFS ;
da Silva, LR .
PHYSICAL REVIEW LETTERS, 2005, 94 (01)
[3]  
[Anonymous], PHYS REV E
[4]   Network biology:: Understanding the cell's functional organization [J].
Barabási, AL ;
Oltvai, ZN .
NATURE REVIEWS GENETICS, 2004, 5 (02) :101-U15
[5]   The architecture of complex weighted networks [J].
Barrat, A ;
Barthélemy, M ;
Pastor-Satorras, R ;
Vespignani, A .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2004, 101 (11) :3747-3752
[6]   The hierarchical product of graphs [J].
Barriere, L. ;
Comellas, F. ;
Dalfo, C. ;
Fiol, M. A. .
DISCRETE APPLIED MATHEMATICS, 2009, 157 (01) :36-48
[7]   PROPERTIES AND CHARACTERIZATIONS OF K-TREES [J].
BEINEKE, LW ;
PIPPERT, RE .
MATHEMATIKA, 1971, 18 (35) :141-&
[8]   Duplication models for biological networks [J].
Chung, F ;
Lu, LY ;
Dewey, TG ;
Galas, DJ .
JOURNAL OF COMPUTATIONAL BIOLOGY, 2003, 10 (05) :677-687
[9]   Recursive graphs with small-world scale-free properties [J].
Comellas, F ;
Fertin, G ;
Raspaud, A .
PHYSICAL REVIEW E, 2004, 69 (03) :037104-1
[10]   Pseudofractal scale-free web [J].
Dorogovtsev, SN ;
Goltsev, AV ;
Mendes, JFF .
PHYSICAL REVIEW E, 2002, 65 (06) :1-066122