When is the idealization R (sic) M an A-ring?

被引:2
作者
Bouchiba, Samir [1 ]
El-Arabi, Mouhssine [1 ]
Khaloui, Mostafa [1 ]
机构
[1] Univ Moulay Ismail, Fac Sci, Dept Math, Meknes, Morocco
关键词
A-module; annihilator; A-ring; idealization; SA-module; SA-ring; zero divisor; ANNIHILATOR CONDITIONS; TORSION ELEMENTS; IDEALS;
D O I
10.1142/S0219498820502278
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We present an answer to a problem raised by Anderson and Chun in [D. D. Anderson and S. Chun, Annihilator conditions on modules over commutative rings, J. Algebra Appl. 16(7) (2017) 1750143] on characterizing when the idealization R (sic) M of a ring R on an R-module M is an A-ring (respectively, an SA-ring) in terms of module-theoretic properties of R and M. Also, we are concerned with an open question asked by these two authors which reads the following: What modules over a given ring R are homomorphic images of modules satisfying the strong Property A? (see, Question 4.4(1) in the above mentioned paper). This paper highly contributes to answer such a question.
引用
收藏
页数:14
相关论文
共 15 条
[1]   Annihilator conditions on modules over commutative rings [J].
Anderson, D. D. ;
Chun, Sangmin .
JOURNAL OF ALGEBRA AND ITS APPLICATIONS, 2017, 16 (08)
[2]   McCoy modules and related modules over commutative rings [J].
Anderson, D. D. ;
Chun, Sangmin .
COMMUNICATIONS IN ALGEBRA, 2017, 45 (06) :2593-2601
[3]   ZERO-DIVISORS, TORSION ELEMENTS, AND UNIONS OF ANNIHILATORS [J].
Anderson, D. D. ;
Chun, Sangmin .
COMMUNICATIONS IN ALGEBRA, 2015, 43 (01) :76-83
[4]   THE SET OF TORSION ELEMENTS OF A MODULE [J].
Anderson, D. D. ;
Chun, Sangmin .
COMMUNICATIONS IN ALGEBRA, 2014, 42 (04) :1835-1843
[5]   IDEALIZATION OF A MODULE [J].
Anderson, D. D. ;
Winders, Michael .
JOURNAL OF COMMUTATIVE ALGEBRA, 2009, 1 (01) :3-56
[6]  
Darani AY, 2010, AN STI U OVID CO-MAT, V18, P59
[7]   On the Strong (A)-Rings of Mahdou and Hassani [J].
Dobbs, David E. ;
Shapiro, Jay .
MEDITERRANEAN JOURNAL OF MATHEMATICS, 2013, 10 (04) :1995-1997
[8]  
FAITH C, 1991, COMMUN ALGEBRA, V19, P1867
[9]   Rings with property (A) and their extensions [J].
Hong, Chan Yong ;
Kim, Nam Kyun ;
Lee, Yang ;
Ryu, Sung Ju .
JOURNAL OF ALGEBRA, 2007, 315 (02) :612-628
[10]  
Huckaba J. A., 1988, Commutative Rings with Zero Divisors