Prediction of new vaccine targets in the core genome of Corynebacterium pseudotuberculosis through omits approaches and reverse vaccinology

被引:23
作者
Araujo, Carlos Leonardo [1 ]
Alves, Jorianne [1 ]
Nogueira, Wylerson [2 ]
Pereira, Lino Cesar [1 ]
Gomide, Anne Cybelle [2 ]
Ramos, Rommel [1 ]
Azevedo, Vasco [2 ]
Silva, Artur [1 ]
Folador, Adriana [1 ]
机构
[1] Fed Univ Para, Ctr Genom & Syst Biol, Lab Genom & Bioinformat, Belem, Para, Brazil
[2] Univ Fed Minas Gerais, Dept Gen Biol, Belo Horizonte, MG, Brazil
关键词
Corynebacterium pseudotuberculosis; Core genome; Omics approaches; Reverse vaccinology; ESCHERICHIA-COLI; MYCOBACTERIUM-TUBERCULOSIS; DIHYDROXYACETONE KINASE; SIGNAL-TRANSDUCTION; SUBSTRATE-BINDING; PAN-GENOMES; GENE; EXPRESSION; VIRULENCE; IDENTIFICATION;
D O I
10.1016/j.gene.2019.03.049
中图分类号
Q3 [遗传学];
学科分类号
071007 ; 090102 ;
摘要
Corynebacterium pseudotuberculosis is the etiologic agent of veterinary relevance diseases, such as caseous lymphadenitis, affecting different animal species causing damage to the global agribusiness. So far, there are no completely effective treatment methods to overcome the impacts caused by this pathogen. Several genomes of the species are deposited on public databases, allowing the execution of studies related to the pan-genomic approach. In this study, we used an integrated in silico workflow to prospect novel putative targets using the core genome, a set of shared genes among 65 C. pseudotuberculosis strains. Subsequently, through RNA-Seq data of the same abiotic stresses in two strains, we selected only induced genes to compose the reverse vaccinology workflow based in two different strategies. Our results predicted six probable antigens in both analysis, which indicates that they have a strong potential to be used in further studies as vaccine targets against this bacterium.
引用
收藏
页码:36 / 45
页数:10
相关论文
共 83 条
[11]   Escherichia coli dihydroxyacetone kinase controls gene expression by binding to transcription factor DhaR [J].
Bächler, C ;
Schneider, P ;
Bähler, P ;
Lustig, A ;
Erni, B .
EMBO JOURNAL, 2005, 24 (02) :283-293
[12]   Corynebacterium pseudotuberculosis and its role in ovine caseous lymphadenitis [J].
Baird, G. J. ;
Fontainet, M. C. .
JOURNAL OF COMPARATIVE PATHOLOGY, 2007, 137 (04) :179-210
[13]  
Barakat A A, 1984, Rev Sci Tech, V3, P151, DOI 10.20506/rst.3.1.147
[14]   Assessing the Genotypic Differences between Strains of Corynebacterium pseudotuberculosis biovar equi through Comparative Genomics [J].
Barauna, Rafael A. ;
Ramos, Rommel T. J. ;
Veras, Adonney A. O. ;
Pinheiro, Kenny C. ;
Benevides, Leandro J. ;
Viana, Marcus V. C. ;
Guimaraes, Luis C. ;
Edman, Judy M. ;
Spier, Sharon J. ;
Azevedo, Vasco ;
Silva, Artur .
PLOS ONE, 2017, 12 (01)
[15]   Prediction of surface exposed proteins in Streptococcus pyogenes, with a potential application to other Gram-positive bacteria [J].
Barinov, Aleksandr ;
Loux, Valentin ;
Hammani, Arnal ;
Nicolas, Pierre ;
Langella, Philippe ;
Ehrlich, Dusko ;
Maguin, Emmanuelle ;
van de Guchte, Maarten .
PROTEOMICS, 2009, 9 (01) :61-73
[16]   DUFs: families in search of function [J].
Bateman, Alex ;
Coggill, Penny ;
Finn, Robert D. .
ACTA CRYSTALLOGRAPHICA SECTION F-STRUCTURAL BIOLOGY COMMUNICATIONS, 2010, 66 :1148-1152
[17]   ftsW is an essential cell-division gene in Escherichia coli [J].
Boyle, DS ;
Khattar, MM ;
Addinall, SG ;
Lutkenhaus, J ;
Donachie, WD .
MOLECULAR MICROBIOLOGY, 1997, 24 (06) :1263-1273
[18]   Identification of Corynebacterium pseudotuberculosis isolates from sheep and goats by PCR [J].
Çetinkaya, B ;
Karahan, M ;
Atil, E ;
Kalin, R ;
De Baere, T ;
Vaneechoutte, M .
VETERINARY MICROBIOLOGY, 2002, 88 (01) :75-83
[19]  
Chen Wei, 2017, Non-Coding RNA, V3, P1, DOI 10.3390/ncrna3010001
[20]   YidC Insertase of Escherichia coli: Water Accessibility and Membrane Shaping [J].
Chen, Yuanyuan ;
Capponi, Sara ;
Zhu, Lu ;
Gellenbeck, Patrick ;
Freites, J. Alfredo ;
White, Stephen H. ;
Dalbey, Ross E. .
STRUCTURE, 2017, 25 (09) :1403-+