Approximate Bayesian Computation for Exponential Random Graph Models for Large Social Networks

被引:11
作者
Wang, Jing [1 ]
Atchade, Yves F. [2 ]
机构
[1] Google, Mountain View, CA USA
[2] Univ Michigan, Dept Stat, Ann Arbor, MI 48109 USA
关键词
Bayesian inference; Exponential random graph model; Intractable normalizing constants; Markov chain Monte Carlo; INTRACTABLE NORMALIZING CONSTANTS;
D O I
10.1080/03610918.2012.703359
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We consider the issue of sampling from the posterior distribution of exponential random graph (ERG) models and other statistical models with intractable normalizing constants. Existing methods based on exact sampling are either infeasible or require very long computing time. We study a class of approximate Markov chain Monte Carlo (MCMC) sampling schemes that deal with this issue. We also develop a new Metropolis-Hastings kernel to sample sparse large networks from ERG models. We illustrate the proposed methods on several examples.
引用
收藏
页码:359 / 377
页数:19
相关论文
共 21 条
  • [1] [Anonymous], 2002, J SOCIAL STRUCTURE
  • [2] [Anonymous], 39 U WASH CTR STAT S
  • [3] [Anonymous], 1960, Proceedings of the American Mathematical Society
  • [4] Atchade Y, 2008, BRAZILIAN J IN PRESS
  • [5] BESAG J, 1974, J ROY STAT SOC B MET, V36, P192
  • [6] Bayesian inference for exponential random graph models
    Caimo, Alberto
    Friel, Nial
    [J]. SOCIAL NETWORKS, 2011, 33 (01) : 41 - 55
  • [7] GEYER CJ, 1992, J R STAT SOC B, V54, P657
  • [8] Goodreau SM, 2008, J STAT SOFTWARE, V24
  • [9] Hall P., 1980, Martingale Limit Theory and Its Application
  • [10] Inference in curved exponential family models for networks
    Hunter, David R.
    Handcock, Mark S.
    [J]. JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS, 2006, 15 (03) : 565 - 583