Crystal structure of glycine N-methyltransferase from rat liver

被引:102
作者
Fu, ZJ
Hu, YB
Konishi, K
Takata, Y
Ogawa, H
Gomi, T
Fujioka, M
Takusagawa, F
机构
[1] UNIV KANSAS,DEPT BIOCHEM,LAWRENCE,KS 66045
[2] TOYAMA MED & PHARMACEUT UNIV,FAC MED,DEPT BIOCHEM,SUGITANI,TOYAMA 93001,JAPAN
关键词
D O I
10.1021/bi961068n
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Glycine N-methyltransferase (GNMT) from rat liver is a tetrameric enzyme with 292 amino acid residues in each identical subunit and catalyzes the S-adenosylmethionine (AdoMet) dependent methylation of glycine to form sarcosine. The crystal structure of GNMT complexed with AdoMet and acetate, a competitive inhibitor of glycine, has been determined at 2.2 Angstrom resolution. The subunit of GNMT forms a spherical shape with an extended N-terminal region which corks the entrance of active site of the adjacent subunit. The active site is located in the near center of the spherical subunit. As a result, the AdoMet and acetate in the active site are completely surrounded by amino acid residues. Careful examination of the structure reveals several characteristics of GNMT. (1) Although the structure of the AdoMet binding domain of the GNMT is very similar to those of other methyltransferases recently determined by X-ray diffraction method, an additional domain found only in GNMT encloses the active site to form a molecular basket, and consequently the structure of GNMT looks quite different from those of other methyltransferases. (2) This unique molecular structure can explain why GNMT can capture folate and polycyclic aromatic hydrocarbons. (3) The unique N-terminal conformation and the subunit structure can explain why GNMT exhibits positive cooperativity in binding AdoMet. From the structural features of GNMT, we propose that the enzyme might be able to capture yet unidentified molecules in the cytosol and thus participates in various biological processes including detoxification of polycyclic aromatic hydrocarbons. In the active site, acetate binds near the S-CH3 moiety of AdoMet. Simple modeling indicates that the amino group of the substrate glycine can be placed close to the methyl group of AdoMet within 3.0 Angstrom and form a hydrogen bond with the carboxyl group of Glu(15) of the adjacent subunit. On the basis of the ternary complex structure, the mechanism of the methyl transfer in GNMT has been proposed.
引用
收藏
页码:11985 / 11993
页数:9
相关论文
共 31 条
  • [1] THE STRUCTURE OF 6-PHOSPHOGLUCONATE DEHYDROGENASE REFINED AT 2.5 A RESOLUTION
    ADAMS, MJ
    GOVER, S
    LEABACK, R
    PHILLIPS, C
    SOMERS, DO
    [J]. ACTA CRYSTALLOGRAPHICA SECTION B-STRUCTURAL SCIENCE, 1991, 47 : 817 - 820
  • [2] HEPATIC ONE-CARBON METABOLISM IN EARLY FOLATE-DEFICIENCY IN RATS
    BALAGHI, M
    HORNE, DW
    WAGNER, C
    [J]. BIOCHEMICAL JOURNAL, 1993, 291 : 145 - 149
  • [3] BRUNGER AT, 1993, XPLOR 3 1 SYSTEM XRA
  • [4] TOM - A FRODO SUBPACKAGE FOR PROTEIN-LIGAND FITTING WITH INTERACTIVE ENERGY MINIMIZATION
    CAMBILLAU, C
    HORJALES, E
    [J]. JOURNAL OF MOLECULAR GRAPHICS, 1987, 5 (04): : 174 - &
  • [5] Carroll K. Johnson, 1965, ORTEP FORTRAN THERMA
  • [6] CRYSTAL-STRUCTURE OF THE HHAL DNA METHYLTRANSFERASE COMPLEXED WITH S-ADENOSYL-L-METHIONINE
    CHENG, XD
    KUMAR, S
    POSFAI, J
    PFLUGRATH, JW
    ROBERTS, RJ
    [J]. CELL, 1993, 74 (02) : 299 - 307
  • [7] GLYCINE N-METHYLTRANSFERASE IS A FOLATE BINDING-PROTEIN OF RAT-LIVER CYTOSOL
    COOK, RJ
    WAGNER, C
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA-BIOLOGICAL SCIENCES, 1984, 81 (12): : 3631 - 3634
  • [8] EFFECT OF DIETARY METHYL-GROUP DEFICIENCY ON ONE-CARBON METABOLISM IN RATS
    COOK, RJ
    HORNE, DW
    WAGNER, C
    [J]. JOURNAL OF NUTRITION, 1989, 119 (04) : 612 - 617
  • [9] JONES TA, 1985, METHOD ENZYMOL, V115, P157
  • [10] KERR SJ, 1972, J BIOL CHEM, V247, P4248