Identification of a regeneration-organizing cell in the Xenopus tail

被引:93
作者
Aztekin, C. [1 ,2 ]
Hiscock, T. W. [1 ,3 ]
Marioni, J. C. [3 ,4 ,5 ]
Gurdon, J. B. [1 ,2 ]
Simons, B. D. [1 ,6 ,7 ]
Jullien, J. [1 ,2 ]
机构
[1] Univ Cambridge, Wellcome Trust Canc Res UK, Gurdon Inst, Cambridge, England
[2] Univ Cambridge, Dept Zool, Cambridge, England
[3] Univ Cambridge, Canc Res UK Cambridge Inst, Cambridge, England
[4] EMBL European Bioinformat Inst, Wellcome Genome Campus, Cambridge, England
[5] Wellcome Sanger Inst, Wellcome Genome Campus, Cambridge, England
[6] Univ Cambridge, Ctr Math Sci, Dept Appl Math & Theoret Phys, Cambridge, England
[7] Univ Cambridge, Wellcome Trust Ctr Stem Cell Res, Cambridge, England
基金
英国惠康基金;
关键词
TISSUE-REPAIR; SPINAL-CORD; EXPRESSION; LIMB; TRANSGENESIS; REQUIREMENT; NETWORK; TOOL;
D O I
10.1126/science.aav9996
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Unlike mammals, Xenopus laevis tadpoles have a high regenerative potential. To characterize this regenerative response, we performed single-cell RNA sequencing after tail amputation. By comparing naturally occurring regeneration-competent and -incompetent tadpoles, we identified a previously unrecognized cell type, which we term the regeneration-organizing cell (ROC). ROCs are present in the epidermis during normal tail development and specifically relocalize to the amputation plane of regeneration-competent tadpoles, forming the wound epidermis. Genetic ablation or manual removal of ROCs blocks regeneration, whereas transplantation of ROC-containing grafts induces ectopic outgrowths in early embryos. Transcriptional profiling revealed that ROCs secrete ligands associated with key regenerative pathways, signaling to progenitors to reconstitute lost tissue. These findings reveal the cellular mechanism through which ROCs form the wound epidermis and ensure successful regeneration.
引用
收藏
页码:653 / +
页数:28
相关论文
共 44 条
[1]  
Aibar S, 2017, NAT METHODS, V14, P1083, DOI [10.1038/NMETH.4463, 10.1038/nmeth.4463]
[2]   Gene Ontology: tool for the unification of biology [J].
Ashburner, M ;
Ball, CA ;
Blake, JA ;
Botstein, D ;
Butler, H ;
Cherry, JM ;
Davis, AP ;
Dolinski, K ;
Dwight, SS ;
Eppig, JT ;
Harris, MA ;
Hill, DP ;
Issel-Tarver, L ;
Kasarskis, A ;
Lewis, S ;
Matese, JC ;
Richardson, JE ;
Ringwald, M ;
Rubin, GM ;
Sherlock, G .
NATURE GENETICS, 2000, 25 (01) :25-29
[3]   Dimensionality reduction for visualizing single-cell data using UMAP [J].
Becht, Etienne ;
McInnes, Leland ;
Healy, John ;
Dutertre, Charles-Antoine ;
Kwok, Immanuel W. H. ;
Ng, Lai Guan ;
Ginhoux, Florent ;
Newell, Evan W. .
NATURE BIOTECHNOLOGY, 2019, 37 (01) :38-+
[4]   Molecular pathways needed for regeneration of spinal cord and muscle in a vertebrate [J].
Beck, CW ;
Christen, B ;
Slack, JMW .
DEVELOPMENTAL CELL, 2003, 5 (03) :429-439
[5]   Temporal requirement for bone morphogenetic proteins in regeneration of the tail and limb of Xenopus tadpoles [J].
Beek, Caroline W. ;
Christen, Bea ;
Barker, Donna ;
Slack, Jonathan M. W. .
MECHANISMS OF DEVELOPMENT, 2006, 123 (09) :674-688
[6]   Integrating single-cell transcriptomic data across different conditions, technologies, and species [J].
Butler, Andrew ;
Hoffman, Paul ;
Smibert, Peter ;
Papalexi, Efthymia ;
Satija, Rahul .
NATURE BIOTECHNOLOGY, 2018, 36 (05) :411-+
[7]   Regeneration Genetics [J].
Chen, Chen-Hui ;
Poss, Kenneth D. .
ANNUAL REVIEW OF GENETICS, VOL 51, 2017, 51 :63-82
[8]   Neuron and microglia/macrophage-derived FGF10 activate neuronal FGFR2/PI3K/Akt signaling and inhibit microglia/macrophages TLR4/NF-κB-dependent neuroinflammation to improve functional recovery after spinal cord injury [J].
Chen, Jian ;
Wang, Zhouguang ;
Zheng, ZengMing ;
Chen, Yu ;
Khor, Sinan ;
Shi, KeSi ;
He, ZiLi ;
Wang, Qingqing ;
Zhao, Yingzheng ;
Zhang, Hongyu ;
Li, Xiaokun ;
Li, Jiawei ;
Yin, Jiayu ;
Wang, Xiangyang ;
Xiao, Jian .
CELL DEATH & DISEASE, 2017, 8 :e3090-e3090
[9]   Conditional targeted cell ablation in zebrafish: A new tool for regeneration studies [J].
Curado, Silvia ;
Anderson, Ryan M. ;
Jungblut, Benno ;
Mumm, Jeff ;
Schroeter, Eric ;
Stainier, Didier Y. R. .
DEVELOPMENTAL DYNAMICS, 2007, 236 (04) :1025-1035
[10]   Early redox activities modulate Xenopus tail regeneration [J].
Ferreira, Fernando ;
Raghunathan, VijayKrishna ;
Luxardi, Guillaume ;
Zhu, Kan ;
Zhao, Min .
NATURE COMMUNICATIONS, 2018, 9