Some results concerning cryptographically significant permutation polynomial

被引:0
|
作者
Gong, Luozhong [1 ]
机构
[1] Hunan Univ Sci & Engn, Sch Math & Comp Sci, Yongzhou 425100, Hunan, Peoples R China
关键词
Inverse function; Permutation polynomial; S-box; Hermites Criterion;
D O I
10.4028/www.scientific.net/AMM.263-266.3073
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
The function x(2n-1-1) + ax(5) (n odd, a is an element of F-2n) is differentially 4-uniform and is never bijective. Using Hermites Criterion, prove some necessary conditions that x(2n-1-1) + ax(5) + L(x), L(x) being a permutation polynomial.
引用
收藏
页码:3073 / 3075
页数:3
相关论文
共 50 条
  • [1] Some results concerning cryptographically significant mappings over GF(2 n )
    Pasalic, E.
    Charpin, P.
    DESIGNS CODES AND CRYPTOGRAPHY, 2010, 57 (03) : 257 - 269
  • [2] Some results concerning cryptographically significant mappings over GF(2n)
    E. Pasalic
    P. Charpin
    Designs, Codes and Cryptography, 2010, 57 : 257 - 269
  • [3] Results on algebraic immunity for cryptographically significant Boolean functions
    Dalai, DK
    Gupta, KC
    Maitra, S
    PROGRESS IN CRYPTOLOGY - INDOCRYPT 2004, PROCEEDINGS, 2004, 3348 : 92 - 106
  • [4] CRYPTOGRAPHICALLY SIGNIFICANT MDS MATRICES OVER FINITE FIELDS: A BRIEF SURVEY AND SOME GENERALIZED RESULTS
    Gupta, Kishan Chand
    Pandey, Sumit Kumar
    Ray, Indranil Ghosh
    Samanta, Susanta
    ADVANCES IN MATHEMATICS OF COMMUNICATIONS, 2019, 13 (04) : 779 - 843
  • [5] SOME FURTHER RESULTS CONCERNING MATRICES WITH ELEMENTS IN A POLYNOMIAL RING
    FROST, MG
    BOUDELLIOUA, MS
    INTERNATIONAL JOURNAL OF CONTROL, 1986, 43 (05) : 1543 - 1555
  • [6] Some polynomial results
    Carlson, F
    COMPTES RENDUS HEBDOMADAIRES DES SEANCES DE L ACADEMIE DES SCIENCES, 1924, 178 : 1677 - 1680
  • [7] Constructions of Cryptographically Significant Boolean Permutations
    Zhang, Fengrong
    Hu, Yupu
    Xie, Min
    Gao, Juntao
    Wang, Qichun
    APPLIED MATHEMATICS & INFORMATION SCIENCES, 2012, 6 (01): : 117 - 123
  • [8] Some Inequalities Concerning the Polar Derivative of a Polynomial
    Mir, Abdullah
    Dar, Bilal
    THAI JOURNAL OF MATHEMATICS, 2015, 13 (02): : 421 - 430
  • [9] Some inequalities concerning the polar derivative of a polynomial
    Mir, Abdullah
    Wani, Ajaz
    Gulzar, M. H.
    JOURNAL OF INTERDISCIPLINARY MATHEMATICS, 2018, 21 (06) : 1387 - 1393
  • [10] On some inequalities concerning growth and derivatives of a polynomial
    Abdullah Mir
    The Journal of Analysis, 2019, 27 : 851 - 857