The Variable Effect of Polyploidization on the Phenotype in Escallonia

被引:29
作者
Denaeghel, Hanne E. P. [1 ,2 ]
Van Laere, Katrijn [1 ]
Leus, Leen [1 ]
Lootens, Peter [1 ]
Van Huylenbroeck, Johan [1 ]
Van Labeke, Marie-Christine [2 ]
机构
[1] Flanders Res Inst Agr Fisheries & Food, Appl Genet & Breeding Plant Sci Unit, Melle, Belgium
[2] Univ Ghent, Fac Biosci Engn, Dept Plant Prod, Ghent, Belgium
来源
FRONTIERS IN PLANT SCIENCE | 2018年 / 9卷
关键词
chromosome doubling; cold tolerance; compactness; image analysis; plant architecture; rooting; capacity; NUCLEAR-DNA CONTENT; PLANT ARCHITECTURE; APICAL DOMINANCE; FREEZING-INJURY; C-VALUE; GROWTH; MORPHOLOGY; INDUCTION; RESPONSES; ROSA;
D O I
10.3389/fpls.2018.00354
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
To induce new variation within the Escallonia genus, chromosome doubling was performed in E. rubra, E. rosea, and E. illinita, three important species within this genus of mainly evergreen woody ornamental species. Obtained tetraploids and diploid controls were analyzed for rooting capacity, leaf and flower characteristics, and plant architecture using image analysis and cold tolerance. In the present study, a breeders' collection of 23 accessions was characterized cytogenetically and described morphologically. All analyzed species and cultivars were diploid (2n =2x =24), with exception of E. pendula, a tetraploid. Today, breeding in Escallonia is limited to lucky finds in seedling populations and few efforts in interspecific hybridization. Three selected Escallonia species underwent an in vitro chromosome doubling with both oryzalin and trifluralin applied as either a continuous or shock treatment. The treatments successfully induced polyploids in all three species. Image analysis revealed that tetraploid E. rosea had decreased shoot length (from 3.8 to 1.3 cm), higher circularity and more dense growth habit compared to diploids. No significant changes in cold tolerance were seen. Tetraploid E. illinita did not differ in shoot length, but an increased outgrowth of axillary buds on the main axis led to denser plants. For tetraploid E. rubra, an increase in plant height (from 4.9 to 5.5 cm) was observed together with a large decrease in circularity and density due to a more polar outgrowth of branches on the main axis. E. rubra tetraploids bore larger flowers than diploids and had an increased cold tolerance (from 7.7 to 11.8-C). Leaf width and area of tetraploids increased for both E. illinita and E. rubra, while a decrease was seen in E. rosea genotypes. For all three species, the rooting capacity of the tetraploids did not differ from the diploids. We conclude that the effect of polyploidization on Escallonia was highly variable and species dependent.
引用
收藏
页数:17
相关论文
共 73 条
[1]  
Abramoff M.D., 2004, Biophotonics Int., V11, P36
[2]   Production of tetraploid plants of non apomictic citrus genotypes [J].
Aleza, Pablo ;
Juarez, Jose ;
Ollitrault, Patrick ;
Navarro, Luis .
PLANT CELL REPORTS, 2009, 28 (12) :1837-1846
[3]   Chromosome doubling in a Rosa rugosa Thunb. hybrid by exposure of in vitro nodes to oryzalin:: the effects of node length, oryzalin concentration and exposure time [J].
Allum, J. F. ;
Bringloe, D. H. ;
Roberts, A. V. .
PLANT CELL REPORTS, 2007, 26 (11) :1977-1984
[4]   Creation of variation through gamma irradiation and polyploidization in Vitex agnus-castus L. [J].
Ari, Esin ;
Djapo, Haris ;
Mutlu, Nedim ;
Gurbuz, Ercan ;
Karaguzel, Osman .
SCIENTIA HORTICULTURAE, 2015, 195 :74-81
[5]  
Barrow M., 2007, FLOW CYTOMETRY PLANT, P349
[6]   Plant architecture:: A dynamic, multilevel and comprehensive approach to plant form, structure and ontogeny [J].
Barthelemy, Daniel ;
Caraglio, Yves .
ANNALS OF BOTANY, 2007, 99 (03) :375-407
[7]  
Bean W.J., 1989, TREES SHRUBS HARDY B
[8]  
Bergstrand KJ, 2013, EUR J HORTIC SCI, V78, P119
[9]   Colchicine-induced polyploidy in loquat (Eriobotrya japonica (Thunb.) Lindl.) [J].
Blasco, Manuel ;
Luisa Badenes, Maria ;
del Mar Naval, Ma .
PLANT CELL TISSUE AND ORGAN CULTURE, 2015, 120 (02) :453-461
[10]   Ploidy doubling by in vitro culture of excised protocorms or protocorm-like bodies in Phalaenopsis species [J].
Chen, Wen Huei ;
Tang, Ching Yan ;
Kao, Yu Lin .
PLANT CELL TISSUE AND ORGAN CULTURE, 2009, 98 (02) :229-238