Hot corrosion and thermal shock resistance of Dense-CYSZ/YSZ bilayer thermal barrier coatings systems applied onto Ni-base superalloy

被引:34
作者
de la Roche, Jhonattan [1 ]
Andres Gomez, Pablo [1 ,2 ]
Manuel Alvarado-Orozco, Juan [3 ]
Toro, Alejandro [1 ]
机构
[1] Univ Nacl Colombia, Tribol & Surfaces Grp, Calle 75 79A-51, Medellin 050034, Colombia
[2] Empresas Publ Medellin EPM, Carrera 58 42 125, Medellin 050015, Colombia
[3] Ctr Ingn & Desarrollo Ind CIDESI, Av Playa Pie Cuesta 702, Desarrollo San Pablo 76125, Queretaro, Mexico
基金
欧洲研究理事会;
关键词
TBC systems; YSZ coatings; CYSZ coatings; Thermal shock resistance; Hot corrosion; YTTRIA-STABILIZED ZIRCONIA; SEGMENTATION CRACK DENSITIES; MOLTEN SULFATE; SODIUM-SULFATE; NA2SO4+V2O5 SALT; BEHAVIOR; MECHANISMS; CERIA; YSZ; MICROSTRUCTURE;
D O I
10.1016/j.jeurceramsoc.2020.07.004
中图分类号
TQ174 [陶瓷工业]; TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Bilayer thermal barriers coatings of Dense Ceria-Yttria-Stabilized Zirconia (D-CYSZ)/Yttria-Stabilized Zirconia (YSZ) were deposited onto Inconel 625 using atmospheric plasma spray (APS). The thickness of the D-CYSZ layer varied (0, 50, 100, and 150 mu m), but the total thickness of the system was kept at 300 mu m. The thermo-me- chanical resistance of the multilayer system was evaluated through thermal shock tests, in which the bilayer systems evaluated exceeded 500 cycles with percentages of delamination of the coating below 20 % of the exposed area and showed higher thermomechanical resistance than a conventional YSZ system. Hot corrosion (HC) resistance of the bilayer system was evaluated using a salt mixture of 32 wt.% Na2SO4 and 68 wt.% V2O5 at 900 degrees C. The systems with a D-CYSZ layer showed higher resistance to HC, exhibiting fewer changes into the microstructure and presence of the monoclinic phase despite the presence of vertical cracks in the microstructure.
引用
收藏
页码:5692 / 5703
页数:12
相关论文
共 47 条
  • [1] Ceramic materials for thermal barrier coatings
    Cao, XQ
    Vassen, R
    Stoever, D
    [J]. JOURNAL OF THE EUROPEAN CERAMIC SOCIETY, 2004, 24 (01) : 1 - 10
  • [2] Cardona S, 2014, COMPUT COLOMB CONF, P35, DOI 10.1109/ColumbianCC.2014.6955368
  • [3] Yttria-stabilized zirconia thermal barrier coatings - A review
    Chen, L. B.
    [J]. SURFACE REVIEW AND LETTERS, 2006, 13 (05) : 535 - 544
  • [4] Thermal barrier coating materials
    Clarke, David R.
    Phillpot, Simon R.
    [J]. MATERIALS TODAY, 2005, 8 (06) : 22 - 29
  • [5] Thermal-barrier coatings for more efficient gas-turbine engines
    Clarke, David R.
    Oechsner, Matthias
    Padture, Nitin P.
    [J]. MRS BULLETIN, 2012, 37 (10) : 891 - 902
  • [6] Materials design for the next generation thermal barrier coatings
    Clarke, DR
    Levi, CG
    [J]. ANNUAL REVIEW OF MATERIALS RESEARCH, 2003, 33 : 383 - 417
  • [7] Thermal barrier coatings technology: critical review, progress update, remaining challenges and prospects
    Darolia, R.
    [J]. INTERNATIONAL MATERIALS REVIEWS, 2013, 58 (06) : 315 - 348
  • [8] Hot corrosion mechanism of yttria-stabilized zirconia powder in the presence of molten Na2SO4 + V2O5 salts
    De la Roche, Jhonattan
    Manuel Alvarado-Orozco, Juan
    Toro, Alejandro
    [J]. RARE METALS, 2021, 40 (05) : 1307 - 1316
  • [9] Mechanisms controlling the durability of thermal barrier coatings
    Evans, AG
    Mumm, DR
    Hutchinson, JW
    Meier, GH
    Pettit, FS
    [J]. PROGRESS IN MATERIALS SCIENCE, 2001, 46 (05) : 505 - 553
  • [10] Fauchais P.L., 2014, THERMAL SPRAY FUNDAM, DOI [DOI 10.1007/978-0-387-68991-3, 10.1007/978-0-387-68991-3]