A GENERAL CONDITION NUMBER FOR POLYNOMIALS

被引:8
作者
Barrio, Roberto [1 ,2 ]
Jiang, Hao [3 ]
Serrano, Sergio [1 ,2 ]
机构
[1] Univ Zaragoza, Dept Matemat Aplicada, E-50009 Zaragoza, Spain
[2] Univ Zaragoza, IUMA, E-50009 Zaragoza, Spain
[3] Natl Univ Def Technol, Sch Sci, Changsha 410073, Hunan, Peoples R China
关键词
polynomial condition number; polynomial basis; orthogonal polynomials; Clenshaw algorithm; floating-point arithmetic; running-error bound; ERROR;
D O I
10.1137/120864581
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper presents a generic condition number for polynomials that is useful for polynomial evaluation of a finite series of polynomial basis defined by means of a linear recurrence. This expression extends the classical one for the power and Bernstein bases, but it also provides us a general framework for all the families of orthogonal polynomials like Chebyshev, Legendre, Gegenbauer, Jacobi, and Sobolev orthogonal polynomial bases. The standard algorithm for the evaluation of finite series in any of these polynomial bases is the extended Clenshaw algorithm. The use of this new condition number permits us to give a general theorem about the forward error for that evaluation algorithm. A running-error bound of the extended algorithm is also presented and all the bounds are compared in several numerical examples.
引用
收藏
页码:1280 / 1294
页数:15
相关论文
共 21 条
[1]  
Abramowitz M., 1972, Handbook on Mathematical Functions with Formulas, Graphs, and Mathematical Tables
[2]  
[Anonymous], J AUST MATH SOC
[3]   Generation and evaluation of orthogonal polynomials in discrete Sobolev spaces II: numerical stability [J].
Barrio, R ;
Serrano, S .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2005, 181 (02) :299-320
[4]   A unified rounding error bound for polynomial evaluation [J].
Barrio, R .
ADVANCES IN COMPUTATIONAL MATHEMATICS, 2003, 19 (04) :385-399
[5]   Rounding error bounds for the Clenshaw and Forsythe algorithms for the evaluation of orthogonal polynomial series [J].
Barrio, R .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2002, 138 (02) :185-204
[6]  
BARRIO R., 1997, THESIS U ZARAGOZA SP
[7]  
Clenshaw CW., 1955, Math Comp, V9, P118, DOI DOI 10.1090/S0025-5718-1955-0071856-0
[8]   RUNNING RELATIVE ERROR FOR THE EVALUATION OF POLYNOMIALS [J].
Delgado, Jorge ;
Pena, J. M. .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2009, 31 (05) :3905-3921
[9]  
Farin G., 2002, CURVES SURFACES COMP
[10]  
Farouki R. T., 1987, Computer-Aided Geometric Design, V4, P191, DOI 10.1016/0167-8396(87)90012-4