Hamiltonian formulation of teleparallel gravity

被引:43
作者
Ferraro, Rafael [1 ,2 ]
Jose Guzman, Maria [1 ]
机构
[1] CONICET UBA, IAFE, Casilla Correo 67,Sucursal 28, RA-1428 Buenos Aires, DF, Argentina
[2] Univ Buenos Aires, Fac Ciencias Exactas & Nat, Dept Fis, Ciudad Univ,Pabellon 1, RA-1428 Buenos Aires, DF, Argentina
关键词
GENERAL-RELATIVITY; GEOMETRY; RIEMANN;
D O I
10.1103/PhysRevD.94.104045
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
The Hamiltonian formulation of the teleparallel equivalent of general relativity is developed from an ordinary second-order Lagrangian, which is written as a quadratic form of the coefficients of anholonomy of the orthonormal frames (vielbeins). We analyze the structure of eigenvalues of the multi-index matrix entering the (linear) relation between canonical velocities and momenta to obtain the set of primary constraints. The canonical Hamiltonian is then built with the Moore-Penrose pseudoinverse of that matrix. The set of constraints, including the subsequent secondary constraints, completes a first-class algebra. This means that all of them generate gauge transformations. The gauge freedoms are basically the diffeomorphisms and the (local) Lorentz transformations of the vielbein. In particular, the Arnowitt, Deser, and Misner algebra of general relativity is recovered as a subalgebra.
引用
收藏
页数:14
相关论文
共 25 条
[1]   CONSTRAINTS IN COVARIANT FIELD THEORIES [J].
ANDERSON, JL ;
BERGMANN, PG .
PHYSICAL REVIEW, 1951, 83 (05) :1018-1025
[2]  
[Anonymous], 1992, P 4 CAN C GEN REL RE
[3]  
[Anonymous], 2012, The principles of quantum mechanics
[4]  
Arnowitt R, 2008, GEN RELAT GRAVIT, V40, P1997, DOI 10.1007/s10714-008-0661-1
[5]   Hamiltonian structure of the teleparallel formulation of general relativity - art. no. 024021 [J].
Blagojevic, M ;
Nikolic, IA .
PHYSICAL REVIEW D, 2000, 62 (02) :1-10
[6]  
Cartan E., 1922, SEANCES ACAD SCI, V174, P593
[7]  
Cartan E., 1922, SEANCES ACAD SCI, V174, P734
[8]   EINSTEIN LAGRANGIAN AS TRANSLATIONAL YANG-MILLS LAGRANGIAN [J].
CHO, YM .
PHYSICAL REVIEW D, 1976, 14 (10) :2521-2525
[9]   Hamiltonian formulation of unimodular gravity in the teleparallel geometry [J].
da Rocha Neto, J. F. ;
Maluf, J. W. ;
Ulhoa, S. C. .
PHYSICAL REVIEW D, 2010, 82 (12)
[10]  
Einstein A, 1928, SITZBER PREUSS AKAD, P217