AN EFFICIENT ALGORITHM FOR L1-NORM PRINCIPAL COMPONENT ANALYSIS

被引:0
作者
Yu, Linbin [1 ]
Zhang, Miao [1 ]
Ding, Chris [1 ]
机构
[1] Univ Texas Arlington, Dept Comp Sci & Engn, Arlington, TX 76019 USA
来源
2012 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP) | 2012年
关键词
Principal component analysis; robustness; Lagrangian methods; Image processing;
D O I
暂无
中图分类号
O42 [声学];
学科分类号
070206 ; 082403 ;
摘要
Principal component analysis (PCA) (also called Karhunen - Loeve transform) has been widely used for dimensionality reduction, denoising, feature selection, subspace detection and other purposes. However, traditional PCA minimizes the sum of squared errors and suffers from both outliers and large feature noises. The L-1-norm based PCA (more precisely L-1,L-1 norm) is more robust. Yet, the optimization on L-1-PCA is much harder than standard PCA. In this paper, we propose a simple yet efficient algorithm to solve the L-1-PCA problem. We carry out extensive experiments to evaluate the proposed algorithm, and verify the robustness against image occlusions. Both numerical and visual results show that L-1-PCA is consistently better than standard PCA.
引用
收藏
页码:1377 / 1380
页数:4
相关论文
共 50 条
  • [21] Non-Greedy L21-Norm Maximization for Principal Component Analysis
    Nie, Feiping
    Tian, Lai
    Huang, Heng
    Ding, Chris
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2021, 30 : 5277 - 5286
  • [22] L1-Norm GEPSVM Classifier Based on an Effective Iterative Algorithm for Classification
    Yan, He
    Ye, Qiaolin
    Zhang, Tianan
    Yu, Dong-Jun
    Xu, Yiqing
    NEURAL PROCESSING LETTERS, 2018, 48 (01) : 273 - 298
  • [23] L1-Norm Tucker Tensor Decomposition
    Chachlakis, Dimitris G.
    Prater-Bennette, Ashley
    Markopoulos, Panos P.
    IEEE ACCESS, 2019, 7 : 178454 - 178465
  • [24] Direction Finding with L1-norm Subspaces
    Markopoulos, P. P.
    Tsagkarakis, N.
    Pados, D. A.
    Karystinos, G. N.
    COMPRESSIVE SENSING III, 2014, 9109
  • [25] On the rotational invariant L1-norm PCA
    Neumayer, Sebastian
    Nimmer, Max
    Setzer, Simon
    Steidl, Gabriele
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2020, 587 : 243 - 270
  • [26] On principal component analysis in L1
    Li, BB
    Martin, EB
    Morris, AJ
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2002, 40 (03) : 471 - 474
  • [27] Dynamic L1-Norm Tucker Tensor Decomposition
    Chachlakis, Dimitris G.
    Dhanaraj, Mayur
    Prater-Bennette, Ashley
    Markopoulos, Panos P.
    IEEE JOURNAL OF SELECTED TOPICS IN SIGNAL PROCESSING, 2021, 15 (03) : 587 - 602
  • [28] Robust L1-norm two-dimensional linear discriminant analysis
    Li, Chun-Na
    Shao, Yuan-Hai
    Deng, Nai-Yang
    NEURAL NETWORKS, 2015, 65 : 92 - 104
  • [29] L1-norm based Two-Dimensional Linear Discriminant Analysis
    Chen, Si-Bao
    Chen, Dao-Ran
    Luo, Bin
    Dianzi Yu Xinxi Xuebao/Journal of Electronics and Information Technology, 2015, 37 (06): : 1372 - 1377
  • [30] Efficient and robust TWSVM classification via a minimum L1-norm distance metric criterion
    Yan, He
    Ye, Qiao-Lin
    Yu, Dong-Jun
    MACHINE LEARNING, 2019, 108 (06) : 993 - 1018