Comparative study of conductometric glucose biosensor based on gold and on magnetic nanoparticles

被引:28
作者
Nouira, Wided [1 ,2 ]
Maaref, Abderrazak
Elaissari, Hamid [3 ]
Vocanson, Francis [4 ]
Siadat, Maryam [5 ]
Jaffrezic-Renault, Nicole [1 ]
机构
[1] Univ Lyon 1, Inst Sci Analyt, F-69622 Villeurbanne, France
[2] Univ Monastir, Lab Interfaces & Mat Avances, Fac Sci Monastir, Monastir 5019, Tunisia
[3] Univ Lyon 1, Lab LAGEP CPE 308G, F-69622 Villeurbanne, France
[4] Univ St Etienne, Lab Hubert Curien, Univ Lyon, F-42023 St Etienne, France
[5] Univ Metz, LASC, ISEA, F-57070 Metz, France
来源
MATERIALS SCIENCE & ENGINEERING C-MATERIALS FOR BIOLOGICAL APPLICATIONS | 2013年 / 33卷 / 01期
关键词
Magnetic nanoparticles; Gold nanoparticles; Conductometric biosensor; Polyelectrolyte; Glucose oxidase; CARBON NANOTUBES; DNA HYBRIDIZATION; AU ELECTRODE; ENZYME; OXIDASE; IMMOBILIZATION; SURFACE; SENSOR; UREA; NANOTECHNOLOGY;
D O I
10.1016/j.msec.2012.08.043
中图分类号
TB3 [工程材料学]; R318.08 [生物材料学];
学科分类号
0805 ; 080501 ; 080502 ;
摘要
The aim of this study was to show the feasibility and the performances of nanoparticle biosensing. A glucose conductometric biosensor was developed using two types of nanoparticles (gold and magnetic), glucose oxidase (GOD) being adsorbed on PAH (poly(allylamine hydrochloride)) modified nanoparticles, deposited on a planar interdigitated electrode (IDES). The best sensitivities for glucose detection were obtained with magnetic nanoparticles (70 mu M/mM and 3 mu M of detection limit) compared to 45 mu M/mM and 9 mu M with gold nanoparticles and 30 mu M/mM and 50 mu M with GOD directly cross-linked on IDEs. When stored in phosphate buffer (20 mM, pH 7.3) at 4 degrees C, the biosensor showed good stability for more than 12 days. (C) 2012 Elsevier B.V. All rights reserved.
引用
收藏
页码:298 / 303
页数:6
相关论文
共 55 条
  • [21] Scanning tunneling microscopy studies of glucose oxidase on gold surfaces
    Losic, D
    Shapter, JG
    Gooding, JJ
    [J]. LANGMUIR, 2002, 18 (14) : 5422 - 5428
  • [22] Nanogold hollow balls with dendritic surface for hybridization of DNA
    Lu, Wensheng
    Lin, Lin
    Jiang, Long
    [J]. BIOSENSORS & BIOELECTRONICS, 2007, 22 (06) : 1101 - 1105
  • [23] Luis H., 2011, J CHEM TECHNOL BIOT, V86, P1354
  • [24] Marin-Zamoraa M.E., 2006, BIOTECHNOLOGY, V126, P295
  • [25] Improvement of enzyme activity, stability and selectivity via immobilization techniques
    Mateo, Cesar
    Palomo, Jose M.
    Fernandez-Lorente, Gloria
    Guisan, Jose M.
    Fernandez-Lafuente, Roberto
    [J]. ENZYME AND MICROBIAL TECHNOLOGY, 2007, 40 (06) : 1451 - 1463
  • [26] Electrochemical biosensing with nanoparticles
    Merkoci, Arben
    [J]. FEBS JOURNAL, 2007, 274 (02) : 310 - 316
  • [27] Improving the performance of electrochemical microsensors based on enzymes entrapped in a redox hydrogel
    Mitala, JJ
    Michael, AC
    [J]. ANALYTICA CHIMICA ACTA, 2006, 556 (02) : 326 - 332
  • [28] Chemical sensing and imaging with metallic nanorods
    Murphy, Catherine J.
    Gole, Anand M.
    Hunyadi, Simona E.
    Stone, John W.
    Sisco, Patrick N.
    Alkilany, Alaaldin
    Kinard, Brian E.
    Hankins, Patrick
    [J]. CHEMICAL COMMUNICATIONS, 2008, (05) : 544 - 557
  • [29] Anisotropic metal nanoparticles: Synthesis, assembly, and optical applications
    Murphy, CJ
    San, TK
    Gole, AM
    Orendorff, CJ
    Gao, JX
    Gou, L
    Hunyadi, SE
    Li, T
    [J]. JOURNAL OF PHYSICAL CHEMISTRY B, 2005, 109 (29) : 13857 - 13870
  • [30] Enhancement of Enzymatic IDE Biosensor Response Using Gold Nanoparticles. Example of the Detection of Urea
    Nouira, W.
    Maaref, A.
    Vocanson, F.
    Siadat, M.
    Saulnier, J.
    Lagarde, F.
    Jaffrezic-Renault, N.
    [J]. ELECTROANALYSIS, 2012, 24 (05) : 1088 - 1094