Measure of multipartite entanglement with computable lower bounds

被引:78
作者
Hong, Yan [1 ]
Gao, Ting [1 ]
Yan, Fengli [2 ]
机构
[1] Hebei Normal Univ, Coll Math & Informat Sci, Shijiazhuang 050024, Peoples R China
[2] Hebei Normal Univ, Coll Phys Sci & Informat Engn, Shijiazhuang 050024, Peoples R China
基金
中国国家自然科学基金;
关键词
QUANTUM INFORMATION; CRYPTOGRAPHY; STATE;
D O I
10.1103/PhysRevA.86.062323
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
In this paper, we present a measure of multipartite entanglement (k-nonseparable), k-ME concurrence Ck-ME(rho), that unambiguously detects all k-nonseparable states in arbitrary dimensions, where the special case 2-ME concurrence C2-ME(rho) is a measure of genuine multipartite entanglement. Themeasure k-MEconcurrence satisfies important characteristics of an entanglement measure, including the entanglement monotone, vanishing on k-separable states, convexity, subadditivity, and being strictly greater than zero for all k-nonseparable states. Two powerful lower bounds on this measure are given. These lower bounds are experimentally implementable without quantum state tomography and are easily computable as no optimization or eigenvalue evaluation is needed. We illustrate detailed examples in which the given bounds perform better than other known detection criteria. DOI: 10.1103/PhysRevA. 86.062323
引用
收藏
页数:10
相关论文
共 41 条
[1]   TELEPORTING AN UNKNOWN QUANTUM STATE VIA DUAL CLASSICAL AND EINSTEIN-PODOLSKY-ROSEN CHANNELS [J].
BENNETT, CH ;
BRASSARD, G ;
CREPEAU, C ;
JOZSA, R ;
PERES, A ;
WOOTTERS, WK .
PHYSICAL REVIEW LETTERS, 1993, 70 (13) :1895-1899
[2]  
Bennett CH, 1996, PHYS REV A, V54, P3824, DOI 10.1103/PhysRevA.54.3824
[3]   Quantum information and computation [J].
Bennett, CH ;
DiVincenzo, DP .
NATURE, 2000, 404 (6775) :247-255
[4]   Purification of noisy entanglement and faithful teleportation via noisy channels [J].
Bennett, CH ;
Brassard, G ;
Popescu, S ;
Schumacher, B ;
Smolin, JA ;
Wootters, WK .
PHYSICAL REVIEW LETTERS, 1996, 76 (05) :722-725
[5]   QUANTUM CRYPTOGRAPHY WITHOUT BELL THEOREM [J].
BENNETT, CH ;
BRASSARD, G ;
MERMIN, ND .
PHYSICAL REVIEW LETTERS, 1992, 68 (05) :557-559
[6]   Concentrating partial entanglement by local operations [J].
Bennett, CH ;
Bernstein, HJ ;
Popescu, S ;
Schumacher, B .
PHYSICAL REVIEW A, 1996, 53 (04) :2046-2052
[7]   Improved lower bounds on genuine-multipartite-entanglement concurrence [J].
Chen, Zhi-Hua ;
Ma, Zhi-Hao ;
Chen, Jing-Ling ;
Severini, Simone .
PHYSICAL REVIEW A, 2012, 85 (06)
[8]   Distributed entanglement [J].
Coffman, V ;
Kundu, J ;
Wootters, WK .
PHYSICAL REVIEW A, 2000, 61 (05) :5
[9]   QUANTUM CRYPTOGRAPHY BASED ON BELL THEOREM [J].
EKERT, AK .
PHYSICAL REVIEW LETTERS, 1991, 67 (06) :661-663
[10]  
Gabriel A, 2010, N AM REV, V295, P10