Gene expression profiling predicts clinical outcome of breast cancer

被引:7050
|
作者
van't Veer, LJ
Dai, HY
van de Vijver, MJ
He, YDD
Hart, AAM
Mao, M
Peterse, HL
van der Kooy, K
Marton, MJ
Witteveen, AT
Schreiber, GJ
Kerkhoven, RM
Roberts, C
Linsley, PS
Bernards, R
Friend, SH
机构
[1] Rosetta Inpharmat, Kirkland, WA 98034 USA
[2] Netherlands Canc Inst, Div Diagnost Oncol, NL-1066 CX Amsterdam, Netherlands
[3] Netherlands Canc Inst, Div Mol Carcinogenesis, NL-1066 CX Amsterdam, Netherlands
[4] Netherlands Canc Inst, Ctr Biomed Genet, NL-1066 CX Amsterdam, Netherlands
基金
美国国家卫生研究院;
关键词
D O I
10.1038/415530a
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Breast cancer patients with the same stage of disease can have markedly different treatment responses and overall outcome. The strongest predictors for metastases (for example, lymph node status and histological grade) fail to classify accurately breast tumours according to their clinical behaviour(1-3). Chemotherapy or hormonal therapy reduces the risk of distant metastases by approximately one-third; however 70-80% of patients receiving this treatment would have survived without it(4,5). None of the signatures of breast cancer gene expression reported to date(6-12) allow for patient-tailored therapy strategies. Here we used DNA microarray analysis supervised classification to identify a gene expression signature strongly predictive of a short interval to distant metastases ('poor prognosis' signature) in patients without tumour cells in local lymph nodes at diagnosis (lymph node negative). In addition, we established a signature that identifies tumours of BRCA1 carriers. The poor prognosis signature consists of genes regulating cell cycle, invasion, metastasis and angiogenesis. This gene expression profile will outperform all currently used clinical parameters in predicting disease outcome. Our findings provide a strategy to select patients who would benefit from adjuvant therapy.
引用
收藏
页码:530 / 536
页数:7
相关论文
共 50 条
  • [11] Gene expression profiling of breast cancer accurately predicts clinical ouitcome of disease
    van de Vijver, M
    van't Veer, LJ
    Dai, H
    He, Y
    Hart, AA
    Mao, M
    Peterse, JL
    van der Kooy, K
    Marton, MJ
    Witteveen, AT
    Schreiber, GJ
    Kerkhoven, RM
    Roberts, C
    Linsey, P
    Bernards, R
    Friend, SH
    MODERN PATHOLOGY, 2002, 15 (01) : 55A - 55A
  • [12] Gene expression profiling predicts clinical outcome of node negative breast cancer using cDNA microarray.
    Tsumagari, K
    Onda, M
    Chiziiwa, K
    Nagahata, T
    Kasumi, F
    Akiyama, F
    Sakamoto, G
    Emi, M
    BREAST CANCER RESEARCH AND TREATMENT, 2003, 82 : S145 - S145
  • [13] Gene expression in extratumoral microenvironment predicts clinical outcome in breast cancer patients
    Erick Román-Pérez
    Patricia Casbas-Hernández
    Jason R Pirone
    Jessica Rein
    Lisa A Carey
    Ronald A Lubet
    Sendurai A Mani
    Keith D Amos
    Melissa A Troester
    Breast Cancer Research, 14
  • [14] Gene expression in extratumoral microenvironment predicts clinical outcome in breast cancer patients
    Roman-Perez, Erick
    Casbas-Hernandez, Patricia
    Pirone, Jason R.
    Rein, Jessica
    Carey, Lisa A.
    Lubet, Ronald A.
    Mani, Sendurai A.
    Amos, Keith D.
    Troester, Melissa A.
    BREAST CANCER RESEARCH, 2012, 14 (02)
  • [15] Selective gene-expression profiling of migratory tumor cells in vivo predicts clinical outcome in breast cancer patients
    Patsialou, Antonia
    Wang, Yarong
    Lin, Juan
    Whitney, Kathleen
    Goswami, Sumanta
    Kenny, Paraic A.
    Condeelis, John S.
    BREAST CANCER RESEARCH, 2012, 14 (05)
  • [16] Selective gene-expression profiling of migratory tumor cells in vivo predicts clinical outcome in breast cancer patients
    Antonia Patsialou
    Yarong Wang
    Juan Lin
    Kathleen Whitney
    Sumanta Goswami
    Paraic A Kenny
    John S Condeelis
    Breast Cancer Research, 14
  • [17] Clinical Application of Gene Expression Profiling in Breast Cancer
    Sparano, Joseph A.
    Fazzari, Melissa
    Kenny, Paraic A.
    SURGICAL ONCOLOGY CLINICS OF NORTH AMERICA, 2010, 19 (03) : 581 - +
  • [18] Gene expression profiling in breast cancer: A clinical perspective
    Arpino, Grazia
    Generali, Daniele
    Sapino, Anna
    Lucia, Del Matro
    Frassoldati, Antonio
    de Laurentis, Michelino
    Paolo, Pronzato
    Mustacchi, Giorgio
    Cazzaniga, Marina
    De Placido, Sabino
    Conte, Pierfranco
    Cappelletti, Mariarosa
    Zanoni, Vanessa
    Antonelli, Andrea
    Martinotti, Mario
    Puglisi, Fabio
    Berruti, Alfredo
    Bottini, Alberto
    Dogliotti, Luigi
    BREAST, 2013, 22 (02): : 109 - 120
  • [19] A Radiation-Derived Gene Expression Signature Predicts Clinical Outcome for Breast Cancer Patients
    Piening, Brian D.
    Wang, Pei
    Subramanian, Aravind
    Paulovich, Amanda G.
    RADIATION RESEARCH, 2009, 171 (02) : 141 - 154
  • [20] Gene expression profiling and prediction of clinical outcome in ovarian cancer
    Sabatier, Renaud
    Finetti, Pascal
    Cervera, Nathalie
    Birnbaum, Daniel
    Bertucci, Francois
    CRITICAL REVIEWS IN ONCOLOGY HEMATOLOGY, 2009, 72 (02) : 98 - 109