Gene expression profiling predicts clinical outcome of breast cancer

被引:7050
|
作者
van't Veer, LJ
Dai, HY
van de Vijver, MJ
He, YDD
Hart, AAM
Mao, M
Peterse, HL
van der Kooy, K
Marton, MJ
Witteveen, AT
Schreiber, GJ
Kerkhoven, RM
Roberts, C
Linsley, PS
Bernards, R
Friend, SH
机构
[1] Rosetta Inpharmat, Kirkland, WA 98034 USA
[2] Netherlands Canc Inst, Div Diagnost Oncol, NL-1066 CX Amsterdam, Netherlands
[3] Netherlands Canc Inst, Div Mol Carcinogenesis, NL-1066 CX Amsterdam, Netherlands
[4] Netherlands Canc Inst, Ctr Biomed Genet, NL-1066 CX Amsterdam, Netherlands
基金
美国国家卫生研究院;
关键词
D O I
10.1038/415530a
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Breast cancer patients with the same stage of disease can have markedly different treatment responses and overall outcome. The strongest predictors for metastases (for example, lymph node status and histological grade) fail to classify accurately breast tumours according to their clinical behaviour(1-3). Chemotherapy or hormonal therapy reduces the risk of distant metastases by approximately one-third; however 70-80% of patients receiving this treatment would have survived without it(4,5). None of the signatures of breast cancer gene expression reported to date(6-12) allow for patient-tailored therapy strategies. Here we used DNA microarray analysis supervised classification to identify a gene expression signature strongly predictive of a short interval to distant metastases ('poor prognosis' signature) in patients without tumour cells in local lymph nodes at diagnosis (lymph node negative). In addition, we established a signature that identifies tumours of BRCA1 carriers. The poor prognosis signature consists of genes regulating cell cycle, invasion, metastasis and angiogenesis. This gene expression profile will outperform all currently used clinical parameters in predicting disease outcome. Our findings provide a strategy to select patients who would benefit from adjuvant therapy.
引用
收藏
页码:530 / 536
页数:7
相关论文
共 50 条
  • [1] Gene expression profiling predicts clinical outcome of breast cancer
    Laura J. van 't Veer
    Hongyue Dai
    Marc J. van de Vijver
    Yudong D. He
    Augustinus A. M. Hart
    Mao Mao
    Hans L. Peterse
    Karin van der Kooy
    Matthew J. Marton
    Anke T. Witteveen
    George J. Schreiber
    Ron M. Kerkhoven
    Chris Roberts
    Peter S. Linsley
    René Bernards
    Stephen H. Friend
    Nature, 2002, 415 : 530 - 536
  • [2] Gene expression profiling predicts clinical outcome of prostate cancer
    Glinsky, GV
    Glinskii, AB
    Stephenson, AJ
    Hoffman, RM
    Gerald, WL
    JOURNAL OF CLINICAL INVESTIGATION, 2004, 113 (06): : 913 - 923
  • [3] Gene expression profiling and clinical outcome in breast cancer
    Bertucci, Francois
    Finetti, Pascal
    Cervera, Nathalie
    Maraninchi, Dominique
    Viens, Patrice
    Birnbaum, Daniel
    OMICS-A JOURNAL OF INTEGRATIVE BIOLOGY, 2006, 10 (04) : 429 - 443
  • [4] Expression profiling predicts outcome in breast cancer
    Laura J van 't Veer
    Hongyue Dai
    Marc J van de Vijver
    Yudong D He
    Augustinus AM Hart
    René Bernards
    Stephen H Friend
    Breast Cancer Research, 5
  • [5] Expression profiling predicts outcome in breast cancer
    van 't Veer, LJ
    Dai, HY
    van de Vijver, MJ
    He, YDD
    Hart, AAM
    Bernards, R
    Friend, SH
    BREAST CANCER RESEARCH, 2003, 5 (01) : 57 - 58
  • [6] Stromal gene expression predicts clinical outcome in breast cancer
    Greg Finak
    Nicholas Bertos
    Francois Pepin
    Svetlana Sadekova
    Margarita Souleimanova
    Hong Zhao
    Haiying Chen
    Gulbeyaz Omeroglu
    Sarkis Meterissian
    Atilla Omeroglu
    Michael Hallett
    Morag Park
    Nature Medicine, 2008, 14 : 518 - 527
  • [7] Stromal gene expression predicts clinical outcome in breast cancer
    Finak, Greg
    Bertos, Nicholas
    Pepin, Francois
    Sadekova, Svetlana
    Souleimanova, Margarita
    Zhao, Hong
    Chen, Haiying
    Omeroglu, Gulbeyaz
    Meterissian, Sarkis
    Omeroglu, Atilla
    Hallett, Michael
    Park, Morag
    NATURE MEDICINE, 2008, 14 (05) : 518 - 527
  • [8] Expression profiling of ion channel genes predicts clinical outcome in breast cancer
    Ko, Jae-Hong
    Ko, Eun A.
    Gu, Wanjun
    Lim, Inja
    Bang, Hyoweon
    Zhou, Tong
    MOLECULAR CANCER, 2013, 12
  • [9] Expression profiling of ion channel genes predicts clinical outcome in breast cancer
    Jae-Hong Ko
    Eun A Ko
    Wanjun Gu
    Inja Lim
    Hyoweon Bang
    Tong Zhou
    Molecular Cancer, 12
  • [10] Gene expression profiling of breast cancer accurately predicts clinical ouitcome of disease
    van de Vijver, MJ
    van't Veer, LJ
    Dai, H
    He, Y
    Hart, AA
    Mao, M
    Peterse, JL
    van der Kooy, K
    Marton, MJ
    Witteveen, AT
    Schreiber, GJ
    Kerkhoven, RM
    Roberts, C
    Linsey, P
    Bernards, R
    Friend, SH
    LABORATORY INVESTIGATION, 2002, 82 (01) : 55A - 55A