Partial synchronization in diffusively time-delay coupled oscillator networks

被引:23
作者
Steur, Erik [1 ,2 ]
Oguchi, Toshiki [3 ]
van Leeuwen, Cees [1 ]
Nijmeijer, Henk [2 ]
机构
[1] Katholieke Univ Leuven, Fac Psychol & Educ Sci, Res Grp Expt Psychol, Lab Perceptual Dynam, B-3000 Louvain, Belgium
[2] Eindhoven Univ Technol, Dept Mech Engn, NL-5600 MB Eindhoven, Netherlands
[3] Tokyo Metropolitan Univ, Grad Sch Sci & Engn, Dept Engn Mech, Hachioji, Tokyo 1920397, Japan
关键词
COMPLEX DYNAMICAL NETWORKS; NONLINEAR-SYSTEMS; INTERNAL SYMMETRY; SPIKING NEURONS; GAP-JUNCTIONS; STABILITY; CELLS; STABILIZATION; PASSIVITY; DESIGN;
D O I
10.1063/1.4771665
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study networks of diffusively time-delay coupled oscillatory units and we show that networks with certain symmetries can exhibit a form of incomplete synchronization called partial synchronization. We present conditions for the existence and stability of partial synchronization modes in networks of oscillatory units that satisfy a semipassivity property and have convergent internal dynamics. (C) 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4771665]
引用
收藏
页数:17
相关论文
共 50 条
  • [31] Synchronization patterns in a network of diffusively delay-coupled memristive Chialvo neuron map
    Wang, Zhen
    Parastesh, Fatemeh
    Natiq, Hayder
    Li, Jianhui
    Xi, Xiaojian
    Mehrabbeik, Mahtab
    PHYSICS LETTERS A, 2024, 514
  • [32] Optimal guaranteed cost synchronization of coupled neural networks with Markovian jump and mode-dependent mixed time-delay
    He, Ping
    Li, Yangmin
    OPTIMAL CONTROL APPLICATIONS & METHODS, 2016, 37 (05) : 922 - 947
  • [33] A Lyapunov approach to stability analysis of partial synchronization in delay-coupled networks
    Su, Libo
    Wei, Yanling
    Michiels, Wim
    Steur, Erik
    Nijmeijer, Henk
    IFAC PAPERSONLINE, 2018, 51 (33): : 198 - 204
  • [34] Stabilization of Coupled Time-delay Neural Networks with Nodes of Different Dimensions
    Manchun Tan
    Neural Processing Letters, 2016, 43 : 255 - 268
  • [35] Finite-time quantized synchronization of coupled discontinuous competitive neural networks with proportional delay and impulsive effects
    Zou, Yi
    Yang, Xinsong
    Tang, Rongqiang
    Cheng, Zunshui
    JOURNAL OF THE FRANKLIN INSTITUTE-ENGINEERING AND APPLIED MATHEMATICS, 2020, 357 (16): : 11136 - 11152
  • [36] Synchronization in an Array of Output-Coupled Boolean Networks With Time Delay
    Zhong, Jie
    Lu, Jianquan
    Liu, Yang
    Cao, Jinde
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2014, 25 (12) : 2288 - 2294
  • [37] Synchronization of Time Delay Coupled Neural Networks Based on Impulsive Control
    Fang, Jie
    Zhang, Yin
    Xu, Danying
    Sun, Junwei
    MATHEMATICAL PROBLEMS IN ENGINEERING, 2020, 2020
  • [38] Finite-time synchronization of coupled networks with one single time-varying delay coupling
    Li, Dong
    Cao, Jinde
    NEUROCOMPUTING, 2015, 166 : 265 - 270
  • [39] Delay-range-dependent local adaptive and robust adaptive synchronization approaches for time-delay chaotic systems
    Siddique, Muhammad
    Rehan, Muhammad
    Bhatti, M. K. L.
    Ahmed, Shakeel
    NONLINEAR DYNAMICS, 2017, 88 (04) : 2671 - 2691
  • [40] Semi-passivity and synchronization of diffusively coupled neuronal oscillators
    Steur, Erik
    Tyukin, Ivan
    Nijmeijer, Henk
    PHYSICA D-NONLINEAR PHENOMENA, 2009, 238 (21) : 2119 - 2128