Global Sliding Mode Control Via Linear Matrix Inequality Approach for Uncertain Chaotic Systems With Input Nonlinearities and Multiple Delays

被引:36
作者
Afshari, Mona [1 ]
Mobayen, Saleh [1 ]
Hajmohammadi, Rahman [1 ]
Baleanu, Dumitru [2 ,3 ]
机构
[1] Univ Zanjan, Elect Engn Dept, POB 38791-45371, Zanjan 4537138791, Iran
[2] Cankaya Univ, Fac Arts & Sci, Dept Math & Comp Sci, TR-06530 Ankara, Turkey
[3] Inst Space Sci, Magurele 77125, Romania
来源
JOURNAL OF COMPUTATIONAL AND NONLINEAR DYNAMICS | 2018年 / 13卷 / 03期
关键词
chaotic systems; global sliding mode control; input nonlinearity; linear matrix inequalities; multiple delays; TIME TRACKING CONTROL; FEEDBACK-CONTROL; ADAPTIVE-CONTROL; PROJECTIVE SYNCHRONIZATION; NONHOLONOMIC SYSTEMS; ROBUST TRACKING; DESIGN; STATE; STABILIZATION; COMMUNICATION;
D O I
10.1115/1.4038641
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
This paper considers a global sliding mode control (GSMC) approach for the stabilization of uncertain chaotic systems with multiple delays and input nonlinearities. By designing the global sliding mode surface, the offered scheme eliminates reaching phase problem. The offered control law is formulated based on state estimation, Lyapunov-Krasovskii stability theory, and linear matrix inequality (LMI) technique which present the asymptotic stability conditions. Moreover, the proposed design approach guarantees the robustness against multiple delays, nonlinear inputs, nonlinear functions, external disturbances, and parametric uncertainties. Simulation results for the presented controller demonstrate the efficiency and feasibility of the suggested procedure.
引用
收藏
页数:14
相关论文
共 98 条
[81]  
Roh Y.- H., 2000, ICASE, V2, P98
[82]   Modeling chemical reactions by forced limit-cycle oscillator: synchronization phenomena and transition to chaos [J].
Shabunin, A ;
Astakhov, V ;
Demidov, V ;
Provata, A ;
Baras, F ;
Nicolis, G ;
Anishchenko, V .
CHAOS SOLITONS & FRACTALS, 2003, 15 (02) :395-405
[83]   Chaos synchronization regimes in multiple-time-delay semiconductor lasers [J].
Shahverdiev, E. A. ;
Shore, K. A. .
PHYSICAL REVIEW E, 2008, 77 (05)
[84]   Dual Combination Synchronization of the Fractional Order Complex Chaotic Systems [J].
Singh, Ajit K. ;
Yadav, Vijay K. ;
Das, S. .
JOURNAL OF COMPUTATIONAL AND NONLINEAR DYNAMICS, 2017, 12 (01)
[85]   Finite-time control for nonlinear spacecraft attitude based on terminal sliding mode technique [J].
Song, Zhankui ;
Li, Hongxing ;
Sun, Kaibiao .
ISA TRANSACTIONS, 2014, 53 (01) :117-124
[86]   Output feedback integral sliding mode controller of time-delay systems with mismatch disturbances [J].
Ting, Huan-Chan ;
Chang, Jeang-Lin ;
Chen, Yon-Ping .
ASIAN JOURNAL OF CONTROL, 2012, 14 (01) :85-94
[87]  
Vaidyanathan S, 2013, J Eng Sci Technol Rev, V6, P53
[88]  
Vaidyanathan S, 2011, COMM COM INF SC, V205, P156
[89]   Secure communication in wireless sensor networks based on chaos synchronization using adaptive sliding mode control [J].
Vaseghi, Behrouz ;
Pourmina, Mohammad Ali ;
Mobayen, Saleh .
NONLINEAR DYNAMICS, 2017, 89 (03) :1689-1704
[90]   Passivity-based adaptive control of chaotic oscillations in power system [J].
Wei, Du Qu ;
Luo, Xiao Shu .
CHAOS SOLITONS & FRACTALS, 2007, 31 (03) :665-671