Two Step, Differential Evolution-Based Identification of Parameters of Jiles-Atherton Model of Magnetic Hysteresis Loops

被引:4
作者
Szewczyk, Roman [1 ]
机构
[1] Ind Res Inst Automat & Measurements, Al Jerozolimskie 202, PL-02486 Warsaw, Poland
来源
AUTOMATION 2018: ADVANCES IN AUTOMATION, ROBOTICS AND MEASUREMENT TECHNIQUES | 2018年 / 743卷
关键词
Jiles-Atherton model; Anhysteretic curve; Differential evolution;
D O I
10.1007/978-3-319-77179-3_60
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Paper presents new method of identification of parameters of Jiles-Atherton model of magnetic hysteresis loops. The method utilizes physical principles of this model. In the described solution, parameters of anhysteretic curve are identified first. Next, parameters determining hysteresis are calculated on the base of set of hysteresis loops measured for different amplitudes of magnetizing field. Both identifications use differential evolutionary strategies method. The efficiency of proposed method is shown on the basis of parameters identification results for Mn-Zn ferrite for power applications.
引用
收藏
页码:635 / 641
页数:7
相关论文
共 17 条
  • [1] Bai B., 2011, INT C EL MACH SYST I, DOI [10.1109/icems.2011.6073612, DOI 10.1109/ICEMS.2011.6073612]
  • [2] Biedrzycki R., 2014, J. Autom. Mob. Robotics Intell. Syst., V8, P63, DOI [10.14313/JAMRIS4-2014/39, DOI 10.14313/JAMRIS4-2014/39]
  • [3] Identification of a hysteresis model parameters with genetic algorithms
    Chwastek, Krzysztof
    Szczyglowski, Jan
    [J]. MATHEMATICS AND COMPUTERS IN SIMULATION, 2006, 71 (03) : 206 - 211
  • [4] Fulginei F.R., 2015, IEEE 1 INT FOR RES T, V2015, P161, DOI [10.1109/RTSI.2015.7325091, DOI 10.1109/RTSI.2015.7325091]
  • [5] Jiles D. C., 1989, IEEE Transactions on Magnetics, V25, P3928, DOI 10.1109/20.42480
  • [6] THEORY OF FERROMAGNETIC HYSTERESIS
    JILES, DC
    ATHERTON, DL
    [J]. JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS, 1986, 61 (1-2) : 48 - 60
  • [7] Knypinski L., 2011, IET C P 2011, DOI [10.1049/cp.2011.0070, DOI 10.1049/CP.2011.0070]
  • [8] Anhysteretic Functions for the Jiles-Atherton Model
    Kokornaczyk, Edmund
    Gutowski, Marek Wojciech
    [J]. IEEE TRANSACTIONS ON MAGNETICS, 2015, 51 (02)
  • [9] Lindner A., 2013, 39 ANN C IEEE IND EL, DOI [10.1109/iecon.2013.6699536, DOI 10.1109/IECON.2013.6699536]
  • [10] Analysis of Ultra-Thin and Flexible Current Transformer Based on JA Hysteresis Model
    Narampanawe, Nishshanka Bandara
    See, Kye Yak
    Zhang, Jie
    Chua, Eng Kee
    Goh, Wei Peng
    [J]. IEEE SENSORS JOURNAL, 2017, 17 (13) : 4029 - 4036